Skip to main content

Advertisement

Log in

Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Pathogenesis of the inflammatory bowel disease (IBD) involves the combination of immunological and inflammatory factors. IBD is associated with several extra-intestinal manifestations. The exact underlying bridge between the probable cardiac diseases in IBD patients is undetermined. Trigonelline is an alkaloid with several therapeutic potential properties. In this study, we aimed to assess the probable underlying mechanisms of this comorbidity as well as protective effect of trigonelline focusing inflammatory response and oxidative state in mouse model of colitis. Dextran sodium sulfate (DSS) was used for induction of colitis in mice. Trigonelline (10, 50 and 100 mg/kg) was administrated via intraperitoneal rout (i.p.) for 14 continuous days. Heart, intestine and serum samples were taken for assessment of total antioxidant capacity, malondialdehyde (MDA), gene expressions of inflammatory markers including tumor necrosis factor alpha (Tnf-α), interleukin 1-beta (Il/1β), toll- like receptor 4 (Tlr4) as well as for evaluation of histopathological alterations. Results demonstrated that trigonelline effectively attenuated the cellular/molecular and histopathological adverse effects of colitis in the intestine and heart tissues. In this regards, we found that trigonelline decreased the MDA level, attenuated the expression of Tnf-α, Il/1β and, Tlr4 as well as modulated the histopathological alterations in the intestine. Furthermore, trigonelline increased the antioxidant capacity in the related experimental groups. We concluded that IBD (colitis) is associated with comorbid cellular/molecular modifications in the heart and for the first time, we found that trigonelline has potential therapeutic effects (at least partially) to attenuate the cardiac manifestations of the colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Sadi RM, Ma TY (2007) IL-1β causes an increase in intestinal epithelial tight junction permeability. J Immunol 178:4641–4649

    Article  CAS  Google Scholar 

  • Amini-Khoei H, Momeny M, Abdollahi A, Dehpour AR, Amiri S, Haj-Mirzaian A, Tavangar SM, Ghaffari SH, Rahimian R, Mehr SE (2016) Tropisetron suppresses colitis-associated cancer in a mouse model in the remission stage. Int Immunopharmacol 36:9–16

    Article  CAS  Google Scholar 

  • Amini-Khoei H, Haghani-Samani E, Beigi M, Soltani A, Mobini GR, Balali-Dehkordi S, Haj-Mirzaian A, Rafieian-Kopaei M, Alizadeh A, Hojjati MR (2019) On the role of corticosterone in behavioral disorders, microbiota composition alteration and neuroimmune response in adult male mice subjected to maternal separation stress. Int Immunopharmacol 66:242–250

    Article  CAS  Google Scholar 

  • Antoni L, Nuding S, Wehkamp J, Stange EF (2014) Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 20:1165

    Article  Google Scholar 

  • Antonisamy P, Arasu MV, Dhanasekaran M, Choi KC, Aravinthan A, Kim NS, Kang C-W, Kim J-H (2016) Protective effects of trigonelline against indomethacin-induced gastric ulcer in rats and potential underlying mechanisms. Food Funct 7:398–408

    Article  CAS  Google Scholar 

  • Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse M, Schreiber S, Schäfer H (2013) Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:4825

    Article  CAS  Google Scholar 

  • Blumberg RS, Strober W (2001) Prospects for research in inflammatory bowel disease. JAMA 285:643–647

    Article  CAS  Google Scholar 

  • Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521

    Article  CAS  Google Scholar 

  • Cardozo LF, Pedruzzi LM, Stenvinkel P, Stockler-Pinto MB, Daleprane JB, Leite M Jr., Mafra D (2013) Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 95:1525–1533

    Article  CAS  Google Scholar 

  • Danese S, Semeraro S, Papa A, Roberto I, Scaldaferri F, Fedeli G, Gasbarrini G, Gasbarrini A (2005) Extraintestinal manifestations in inflammatory bowel disease. World J Gastroenterol 11:7227

    Article  Google Scholar 

  • Dutta M, Ghosh AK, Mohan V, Mishra P, Rangari V, Chattopadhyay A, Das T, Bhowmick D, Bandyopadhyay D (2014) Antioxidant mechanism (s) of protective effects of Fenugreek 4-hydroxyisoleucine and trigonelline enriched fraction [TF4H (28%)] Sugaheal® against copper-ascorbate induced injury to goat cardiac mitochondria in vitro. J Pharm Res 8:798–811

    CAS  Google Scholar 

  • Gabriels K, Hoving S, Seemann I, Visser NL, Gijbels MJ, Pol JF, Daemen MJ, Stewart FA, Heeneman S (2012) Local heart irradiation of ApoE−/− mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 105:358–364

    Article  Google Scholar 

  • Gaur V, Bodhankar SL, Mohan V, Thakurdesai PA (2013) Neurobehavioral assessment of hydroalcoholic extract of Trigonella foenum-graecum seeds in rodent models of Parkinson’s disease. Pharm Biol 51:550–557

    Article  CAS  Google Scholar 

  • Haj-Mirzaian A, Amiri S, Amini-Khoei H, Hosseini M-J, Haj-Mirzaian A, Momeny M, Rahimi-Balaei M, Dehpour AR (2017) Anxiety-and depressive-like behaviors are associated with altered hippocampal energy and inflammatory status in a mouse model of Crohn’s disease. Neuroscience 366:124–137

    Article  CAS  Google Scholar 

  • Kojouharoff G, Hans W, Obermeier F, Männel D, Andus T, Schölmerich J, Gross V, Falk W (1997) Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol 107:353–358

    Article  CAS  Google Scholar 

  • Kristensen SL, Ahlehoff O, Lindhardsen J, Erichsen R, Lamberts M, Khalid U, Nielsen OH, Torp-Pedersen C, Gislason GH, Hansen PR (2014) Inflammatory bowel disease is associated with an increased risk of hospitalization for heart failure: a Danish Nationwide Cohort Study. Circ Heart Fail 7:717–722

    Article  Google Scholar 

  • Laird MH, Rhee SH, Perkins DJ, Medvedev AE, Piao W, Fenton MJ, Vogel SN (2009) TLR4/MyD88/PI3K interactions regulate TLR4 signaling. J Leukoc Biol 85:966–977

    Article  CAS  Google Scholar 

  • Liu L, Miao M, Chen Y, Wang Z, Sun B, Liu X (2018) Altered function and expression of abc transporters at the blood-brain barrier and increased brain distribution of phenobarbital in acute liver failure mice. Front Pharmacol 9:190

    Article  Google Scholar 

  • Luque-Sierra A, Alvarez-Amor L, Kleemann R, Martín F, Varela LM (2018) Extra-virgin olive oil with natural phenolic content exerts an anti-inflammatory effect in adipose tissue and attenuates the severity of atherosclerotic lesions in ldlr–/–.Leiden Mice. Mol Nutr Food Res 62:1800295

    Article  Google Scholar 

  • McKenzie S, Baker M, Buffinton G, Doe W (1996) Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Investig 98:136–141

    Article  CAS  Google Scholar 

  • Menconi A, Hernandez-Velasco X, Vicuna E, Kuttappan V, Faulkner O, Tellez G, Hargis B, Bielke L (2015) Histopathological and morphometric changes induced by a dextran sodium sulfate (DSS) model in broilers. Poult Sci 94:906–911

    Article  CAS  Google Scholar 

  • Mirzaie M, Khalili M, Kiasalari Z, Roghani M (2016) Neuroprotective and antiapoptotic potential of trigonelline in a striatal 6-hydroxydopamine rat model of Parkinson’s disease. Neurophysiology 48:176–183

    Article  CAS  Google Scholar 

  • Nyska A, Murphy E, Foley JF, Collins BJ, Petranka J, Howden R, Hanlon P, Dunnick JK (2004) Acute hemorrhagic myocardial necrosis and sudden death of rats exposed to a combination of ephedrine and caffeine. Toxicol Sci 83:388–396

    Article  Google Scholar 

  • Pavli P, Cavanaugh J, Grimm M (1996) Inflammatory bowel disease: germs or genes? Lancet 347:1198

    Article  CAS  Google Scholar 

  • Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008) Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Investig 118:560–570

    CAS  PubMed  Google Scholar 

  • Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F (2015) Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci 36:553–560

    Article  Google Scholar 

  • Roifman I, Beck PL, Anderson TJ, Eisenberg MJ, Genest J (2011) Chronic inflammatory diseases and cardiovascular risk: a systematic review. Can J Cardiol 27:174–182

    Article  Google Scholar 

  • Schicho R, Marsche G, Storr M (2015) Cardiovascular complications in inflammatory bowel disease. Curr Drug Targets 16:181–188

    Article  CAS  Google Scholar 

  • Swidsinski A, Loening-Baucke V, Lochs H, Hale LP (2005) Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol 11:1131

    Article  Google Scholar 

  • Thapa SD, Hadid H, Imam W, Schairer J, Jafri S-M (2015) Effect of inflammatory bowel disease-related characteristics and treatment interventions on cardiovascular disease incidence. Am J Med Sci 350:175–180

    Article  Google Scholar 

  • Tohda C, Kuboyama T, Komatsu K (2005) Search for natural products related to regeneration of the neuronal network. Neurosignals 14:34–45

    Article  CAS  Google Scholar 

  • Vicente SJ, Ishimoto EY, Torres EA (2013) Coffee modulates transcription factor Nrf2 and highly increases the activity of antioxidant enzymes in rats. J Agric Food Chem 62:116–122

    Article  Google Scholar 

  • Wong S, Knight J, Hopfer S, Zaharia O, Leach CN, Sunderman F (1987) Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 33:214–220

    CAS  PubMed  Google Scholar 

  • Xavier R, Podolsky D (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427

    Article  CAS  Google Scholar 

  • Yazbeck R, Howarth GS, Butler RN, Geier MS, Abbott CA (2011) Biochemical and histological changes in the small intestine of mice with dextran sulfate sodium colitis. J Cell Physiol 226:3219–3224

    Article  CAS  Google Scholar 

  • Yoshinari O, Takenake A, Igarashi K (2013) Trigonelline ameliorates oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Med Food 16:34–41

    Article  CAS  Google Scholar 

  • Zhang H, Wang H-Y, Bassel-Duby R, Maass DL, Johnston WE, Horton JW, Tao W (2007) Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. Am J Physiol Heart Circ Physiol 292:H2408–H2416

    Article  CAS  Google Scholar 

  • Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19:3523–3531

    Article  CAS  Google Scholar 

  • Zhou J-Y, Du X-H, Zhang Z, Qian G-S (2017) Trigonelline inhibits inflammation and protects β cells to prevent fetal growth restriction during pregnancy in a mouse model of diabetes. Pharmacology 100:209–217

    Article  CAS  Google Scholar 

  • Zou L, Wang W, Liu S, Zhao X, Lyv Y, Du C, Su X, Geng B, Xu G (2016) Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim Biophys Acta (BBA) Mol Basis Dis 1862:182–191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Shahrekord University of Medical Sciences (SKUMS) with grant number of “2363”. The authors would like to thank Dr. Mahmoud Rafieian kopaei, Dr. Gholam Reza Mobini, Dr. Elham Saghaei and Mrs. Elham Bijad for their collaboration on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Amini-Khoei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi-Ardali, H., Lorigooini, Z., Soltani, A. et al. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: protective effect of the trigonelline. Inflammopharmacol 27, 1265–1273 (2019). https://doi.org/10.1007/s10787-019-00581-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00581-w

Keywords

Navigation