Skip to main content
Log in

Anti-inflammatory properties of Liposome-encapsulated clodronate or Anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Overproduction of inflammatory markers by immune cells, such as macrophages and neutrophils, is one of the main reasons for many inflammatory conditions and inhibiting or suppressing of their production by cell depletion may provide new therapeutic targets or approaches to prevent a variety of inflammatory conditions. In this study, we examined the possible effects of anti-Ly6G-mediated systemic neutrophil depletion and liposome-encapsulated clodronate (LEC)-mediated systemic macrophage depletion on the inflammatory signs (thermal hyperalgesia, mechanical allodynia, oedema and fever) and measured the levels of various inflammation markers (tumour necrosis factor-α (TNF-α), interleukins (IL)-1β, IL-4, IL-10, macrophage inflammatory protein-1 alpha (MIP-1α/CCL3) and myeloperoxidase (MPO) in paw and spinal cord tissues in carrageenan (CG)-induced hindpaw inflammation model in rats. CG injection into the paw caused inflammation characterized by redness, swelling, heat and pain hypersensitivities. Anti-Ly6G or LEC significantly ameliorated the pain behaviours, and decreased the oedema and fever. Efficacies of anti-Ly6G or LEC on inflammatory responses changed depend on the degree of inhibition in inflammatory markers of inflamed paw or spinal cord. Anti-inflammatory properties of anti-Ly6G or LEC suggest that macrophages and/or neutrophil-mediated inflammatory cascade in inflamed site and spinal cord which can play key roles in inflammatory pain responses. These systemic or peripheral inflammatory mediators may be therapeutic targets in the treatment of many inflammatory conditions and related various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aratani Y (2018) Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640:47–52

    Article  CAS  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruhn KW, Dekitani K, Nielsen TB, Pantapalangkoor P, Spellberg B (2015) Ly6G-mediated depletion of neutrophils is dependent on macrophages. Results Immunol 6:5–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucher K, Schmitt F, Autenrieth SE, Dillmann I, Nürnberg B, Schenke- Layland K, Beer-Hammer S (2015) Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice. J Leukoc Biol 98:365–372

    Article  CAS  PubMed  Google Scholar 

  • Dawes JM, McMahon SB (2013) Chemokines as peripheral pain mediators. Neurosci Lett 557:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dawes JM, Vincent A (2016) Autoantibodies and pain. Curr Opin Support Palliat Care 10:137–142

    Article  PubMed  Google Scholar 

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491

    Google Scholar 

  • Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG (2010) Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun 2(3):216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14(6):392–404

    Article  CAS  PubMed  Google Scholar 

  • Hua S, Cabot PJ (2010) Mechanisms of peripheral immune-cell-mediated analgesia in inflammation: clinical and therapeutic implications. Trends Pharmacol Sci 31:427–433

    Article  CAS  PubMed  Google Scholar 

  • Ji RR, Chamessian A, Zhang YQ (2016) Pain regulation by nonneuronal cells and inflammation. Science 354:572–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawanishi N, Mizokami T, Niihara H, Yada K, Suzuki K (2015) Macrophage depletion by clodronate liposome attenuates muscle injury and inflammation following exhaustive exercise. Biochem Biophys Rep 5:146–151

    PubMed  PubMed Central  Google Scholar 

  • Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87(1):3–11

    Article  CAS  PubMed  Google Scholar 

  • Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175

    Article  CAS  PubMed  Google Scholar 

  • Lemmer S, Schiesser P, Geis C, Sommer C, Vanegas H, Üçeyler N (2015) Enhanced spinal neuronal responses as a mechanism for the increased nociceptive sensitivity of interleukin-4 deficient mice. Exp Neurol 271:198–204

    Article  CAS  PubMed  Google Scholar 

  • Llorian-Salvador M, Gonzalez-Rodriguez S, Lastra A, Fernandez-Garcia MT, Hidalgo A, Menendez L, Baamonde A (2016) Involvement of CC Chemokine Receptor 1 and CCL3 in Acute and Chronic Inflammatory Pain in Mice. Basic Clin Pharmacol Toxicol 119(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Mert T, Gunay I, Ocal I, Guzel AI, Inal TC, Sencar L, Polat S (2009) Macrophage depletion delays progression of neuropathic pain in diabetic animals. Naunyn Schmiedebergs Arch Pharmacol 379:445–452

    Article  CAS  PubMed  Google Scholar 

  • Mert T, Ocal I, Gunay I (2014a) Pain relieving effects of pulsed magnetic fields in a rat model of carrageenan-induced hindpaw inflammation. Int J Rad Biol 90(1):95–103

    Article  CAS  PubMed  Google Scholar 

  • Mert T, Tugtag B, Kilinc M, Sahin E, Oksuz H, Gunes Y (2014b) Preventive and therapeutic effects of a beta adrenoreceptor agonist, dobutamine, in carrageenan-induced inflammatory nociception in rats. Inflammation 90(1):95–103

    CAS  Google Scholar 

  • Miller RJ, Jung H, Bhangoo SK, White FA (2009) Cytokine and chemokine regulation of sensory neuron function. Handb Exp Pharmacol 194:417–449

    Article  CAS  Google Scholar 

  • Prame Kumar K, Nicholls AJ, Wong CHY (2018) Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res 371(3):551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raoof R, Willemen HLDM, Eijkelkamp N (2018) Divergent roles of immune cells and their mediators in pain. Rheumatology (Oxford) 57(3):429–440

    Article  CAS  Google Scholar 

  • Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittner HL, Machelska H, Stein C (2005) Leukocytes in the regulation of pain and analgesia. J Leukoc Biol 78:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6(12):1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Steen-Louws C, Hartgring SAY, Popov-Celeketic J, Lopes AP, de Smet MBM, Eijkelkamp N, Lafeber FPJG, Hack CE, van Roon JAG (2016) IL4-10 fusion protein is a novel drug to treat persistent inflammatory pain. J Neurosci 36:7353–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suo J, Linke B, Meyer dos Santos S, Pierre S, Stegner D, Zhang DD, Denis CV, Geisslinger G, Nieswandt B, Scholich K (2014) Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol 96(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Tejada MA, Montilla-Garcia A, Cronin SJ, Cikes D, Sanchez-Fernandez C, Gonzalez-Cano R, Ruiz-Cantero MC, Penninger JM, Vela JM, Baeyens JM, Cobos EJ (2017) Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proc Natl Acad Sci USA 114(31):8396–8401

    Article  CAS  PubMed  Google Scholar 

  • Willemen HL, Eijkelkamp N, Garza Carbajal A, Wang H, Mack M, Zijlstra J, Heijnen CJ, Kavelaars A (2014) Monocytes/macrophages control resolution of transient inflammatory pain. J Pain 15(5):496–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Grant no. 116S502 from The Scientific and Technological Research Council of Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tufan Mert.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, T., Sahin, M., Sahin, E. et al. Anti-inflammatory properties of Liposome-encapsulated clodronate or Anti-Ly6G can be modulated by peripheral or central inflammatory markers in carrageenan-induced inflammation model. Inflammopharmacol 27, 603–612 (2019). https://doi.org/10.1007/s10787-019-00563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-019-00563-y

Keywords

Navigation