Skip to main content
Log in

Anti-inflammatory role of TPCA-1 encapsulated nanosomes in porcine chondrocytes against TNF-α stimulation

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

In this study, we evaluated the hypothesis that immunonanosomes carrying the drug [5-(p-Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) will help in reducing nuclear factor-kappaB (NF-κB)-associated inflammation in porcine chondrocytes against tumor necrosis factor-alpha (TNF-α)-induced stress. The nanosomes were tagged with monoclonal anti-type II collagen (MabCII) antibody to specifically target the exposed type II collagen in cartilage matrix. TPCA-1 at a concentration of 10 µM significantly reduced expression of the matrix-degrading enzyme, Matrix metalloproteinase-13 (MMP-13) and blocked the p65 nuclear translocation. In comparison to the TPCA-1 solution alone, the TPCA-1 nanosomes were found to be more effective in reducing the cellular toxicity, oxidative stress and inflammation in chondrocytes treated with TNF-α. In addition, TPCA-1 nanosomes were more effective in reducing the gene expression of hypoxia-inducible factor-2alpha (HIF-2α) that in turn is associated with the regulation of MMP-13 gene. TPCA-1 nanosomes significantly reduced expression of both these genes. The data also showed that TPCA-1 did not attenuate the down-regulated gene expression levels of anabolic genes aggrecan (ACAN) and collagen type II alpha (COL2A1). In conclusion, this study showed that TPCA-1 nanosomes carrying a dose of 10 µM TPCA-1 can effectively increase the survival of cultured porcine chondrocytes against TNF-α-induced stress. The findings of this study could be used to develop nanosome-based drug delivery systems (DDSs) for animal model of OA. Moreover, the approach presented here can be further utilized in other studies for targeted delivery of the drug of interest at a cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Funding

This work was supported by grants from the Arthritis Foundation (Discovery award; H. Cho) and Oxnard Foundation (Medical Research; H. Cho). This research also supported by a VA Merit Review award and VA Research Career Scientist Award (K. Hasty) from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Contributions

FB and HC: designed and performed the experiments. FB and HC: performed the statistical analysis. FB and HC: wrote the manuscript. HC and KH: critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Karen A. Hasty or Hongsik Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, F.U.R., Hasty, K.A. & Cho, H. Anti-inflammatory role of TPCA-1 encapsulated nanosomes in porcine chondrocytes against TNF-α stimulation. Inflammopharmacol 27, 1011–1019 (2019). https://doi.org/10.1007/s10787-018-0542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0542-5

Keywords

Navigation