Skip to main content

Advertisement

Log in

Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is a collection of inflammatory conditions of colon and small intestine which affect millions of individuals worldwide and the prevalence amount is on the rise. The organ failure as well as loss of tissue function is because of the inflammatory reaction which is the major contributor of tissue healing leading to lifelong debilitation. To stop the tough consequences of inflammation every patient pursues alternative therapy to relieve symptoms. Green tea polyphenols (GTPs) play significant roles in down regulating signaling pathways because GTPs exert effective antioxidant properties and regulate Toll-like receptor 4 (TLR4) expression via certain receptor, inhibited endotoxin-mediated tumor necrosis factor alpha (TNF-α) production by blocking transcription nuclear factor-kappa B (NF-kB) activation and upstream of mediated I kappa B kinase complex pathway activities, as well as intrusion with the flow of cytokines and synthesis of cyclooxygenase-2 (COX-2). This article highlights the green approach regarding the defensive effects of GTP review-related studies concerning the contrary effects and the key therapeutic targets application of GTPs in biomedical field to treat inflammatory bowel disease (IBD) and its complications.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GTPs:

Green tea polyphenols

TLR4:

Toll-like receptor 4

COX-2:

Cyclooxygenase-2

IBD:

Inflammatory bowel disease

CED:

Celiac disease

CAM:

Complementary and alternative medicine

UC:

Ulcerative colitis

CD:

Crohn’s disease

TNF-α:

Tumor necrosis factor alpha

NSAIDs:

Non-steroidal anti-inflammatory drugs

IKK:

I kappa B kinase complex

NF-kB:

Nuclear factor-kappa B

NPCs:

Neural progenitor cells

EGCG (−):

Epigallocatechin gallate

EGC (−):

Epigallocatechin

ECG (−):

Epicatechin gallate

EC (−):

Epicatechin

LPL:

Lamina propria lymphocytes

APAP:

Acetaminophen [N-acetyl-p-aminophenol]

C. diff:

Clostridium difficile

Nrf2:

Nuclear factor erythroid 2-related factor

NO:

Nitric oxide

NOS:

Nitric oxide synthases

iNOS:

Inducible nitric oxide synthase

cNOS:

Catalytic nitric oxide synthase

MMP-9:

Matrix metalloproteinase-9

References

  • Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90(4):464–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avdagic N, Zaciragic A, Babic N, Hukic M, Seremet M, Lepara O, Nakac IE (2013) Nitric oxide as a potential biomarker in inflammatory bowel disease. Bosn J Basic Med Sci 13(1):5–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay D, Chatterjee TK, Dasgupta A, Lourduraja J, Dastidar SG (2005) In vitro and in vivo antimicrobial action of tea: the commonest beverage of Asia. Biol Pharm Bull 28(11):2125–2127

    Article  CAS  PubMed  Google Scholar 

  • Banji D, Banji OJ, Abagoni S, Hayat MS, Kambam VL (2011) Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Res 1410:141–151

    Article  CAS  PubMed  Google Scholar 

  • Beers MH, Porter RS, Jones TV, Kaplan JL, Berkwits M (2006) The Merck manual. Merck & Co, Whitehouse Station

    Google Scholar 

  • Bitzer ZT, Elias RJ, Vijay-KM Lambert JD (2016) (□)-Epigallocatechin-3-gallate decreases colonic inflammation and permeability in a mouse model of colitis, but reduces macronutrient digestion and exacerbates weight loss. Mol Nutr Food Res 60:2267–2274

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916

    Article  CAS  PubMed  Google Scholar 

  • Bruneton J (2001) “Pharmacognosie. Phytochimie. Plantes Me´dicinales”. Paris: Technique documentation. droit prospectif de la Recherche Juridique 31(6):337–360

  • Cano P, Massot C, Rodriguez L, Castell M (2014) Flavonoids affect host-microbiota crosstalk through TLR modulation. Antioxid 3(4):649–670

    Article  Google Scholar 

  • Cho JH, Brant SR (2011) Recent insights into the genetics of inflammatory bowel disease. Gastroenterol 140(6):1704–1712

    Article  CAS  Google Scholar 

  • Chung MY, Mah E, Masterjohn C, Noh SK, Park YK, Clark RM et al (2015) Green tea lowers hepatic Cox-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J Med Food 18(6):648–655

    Article  CAS  PubMed  Google Scholar 

  • Conney AH, Zhou S, Lee MJ, Xie JG, Yang CS, Lou YR et al (2007) Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice. Toxicol Appl Pharmacol 224:209–213

    Article  CAS  PubMed  Google Scholar 

  • Cross RK, Wilson KT (2003) Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 9:179–189

    Article  PubMed  Google Scholar 

  • Dhillon SS, Mastropaolo LA, Murchie R, Griffiths C, Thoni C, Elkadri A et al (2014) Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin Transl Gastroenterol 5(5):e46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobutovic B, Smiljanic K, Soskic S, Hans DD, Isenovic ER (2011) Nitric oxide and its role in cardiovascular disease. Open Nitric oxide J 3(1):65–71

    Article  CAS  Google Scholar 

  • Doering J, Begue B, Lentze MJ, Rieux LF, Goulet O, Schmitz J et al (2004) Induction of T lymphocyte apoptosis by sulphasalazine in patients with Crohn’s disease. Gut 53:1632–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MO, Starley B, Galagan JC, Yabes JM, Evans S, Salama JJ (2016) Tea and recurrent clostridium difficile infection. Gastroenterol Res Pract 3:451–468

    Google Scholar 

  • Fan FY, Sang LX, Jiang M (2017) Catechins and their therapeutic benefits to inflammatory bowel disease. Mol 22(3):484

    Article  Google Scholar 

  • Frobes A, Escher J, Hebuterne X, Klek S, Krznaric Z, Schneider S et al (2016) ESPEN guideline: clinical nutrition in inflammatory bowel disease. Clinic Nutr 36(2017):321–347

    Google Scholar 

  • Frolkis A, Dieleman LA, Barkema HW, Remo P, Ghosh S, Fedorak RN et al (2013) Environment and the inflammatory bowel diseases. Can J Gastroenterol 27(3):18–24

    Article  Google Scholar 

  • Gawronska B, Karna JM, Kralisz M, Kemona H (2017) Markers of inflammation and influence of nitric oxide on platelet activation in the course of ulcerative colitis. Oncotarget 8(40):68108–68114

    Article  PubMed  PubMed Central  Google Scholar 

  • Gracia RLA, Ruigomez A, Panes J (2006) Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterol 130(6):1588–1594

    Article  Google Scholar 

  • Gradel KO, Nielsen HL, Schonheyder HC, Tove E, Brian K, Nielsen H et al (2009) Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterol 137(2):495–501

    Article  Google Scholar 

  • Granja A, Frias I, Neves AR, Pinheiro M (2017) Reis S (2017) Therapeutic potential of epigallocatechin gallate nano delivery systems. Biomed Res Int 4:1–15

    Article  Google Scholar 

  • Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20(1):53–65

    Article  CAS  PubMed  Google Scholar 

  • Guandalini S (2014) Are probiotics or prebiotics useful in pediatric irritable bowel syndrome or inflammatory bowel disease? Front Med 1(1):23

    Google Scholar 

  • Hirsch N, Konstantinov A, Anavi S, Aronis A, Hagay Z, Madar Z et al (2016) Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice. Mol Nutr Food Res 60:2542–2553

    Article  CAS  PubMed  Google Scholar 

  • Hsu SW, Chang TC, Wu YK, Lin KT, Shi LS, Lee SY (2017) Rhodiola crenulata extract counteracts the effect of hypobaric hypoxia in rat heart via redirection of the nitric oxide and arginase1 pathway. BMC Complement Altern Med 17(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Ide K, Yamada H, Takuma N, Kawasaki Y, Harada S, Nakase J et al (2016) Effects of green tea consumption on cognitive dysfunction in an elderly population: a randomized placebo-controlled study. Nutr J 15(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssens PLRH, Hursel R, Plantenga MSW (2016) Nutraceuticals for body-weight management: the role of green tea catechins. Physiol Behav 162:83–87

    Article  CAS  PubMed  Google Scholar 

  • Jostins L, Ripke S, Weersma RK, Duerr RH, McgGovern DP, Hui KY et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju J, Lu G, Lambert JD, Yang CS (2007) Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol 17(5):395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinman RE, Baldassano RN, Caplan A, Griffith AM, Heyman MB, Lake AM et al (2004) Nutrition support for pediatric patients with inflammatory bowel disease: a clinical report of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 39(1):15–27

    Article  PubMed  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterol 146(6):1489–1499

    Article  CAS  Google Scholar 

  • Kubes P, Reinhardt PH, Payne D, Woodman RC (1995) Excess nitric oxide does not cause cellular, vascular, or mucosal dysfunction in the cat small intestine. Am J Physiol 269(G):34–41

    Google Scholar 

  • Larussa T, Imeneo M, Luzza F (2017) Potential role of nutraceutical compounds in inflammatory bowel disease. World J Gastroenterol 23(14):2483–2492

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YS, Tsai YJ, Tsay JS, Lin JK (2003) Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem 51(7):1864–1873

    Article  CAS  PubMed  Google Scholar 

  • Little CH, Combet E, Mcmillan DC, Horgan PG, Roxburgh CSD (2017) The role of dietary polyphenol in the moderation of the inflammatory responses in early stage colorectal cancer. Crit Rev Food Sci Nutr 57(11):2310–2320

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wu X, Zhang B, Yang W, Li D, Dong Y et al (2017) Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage. Food Nutr Res 61(1):1333390

    Article  PubMed  PubMed Central  Google Scholar 

  • Ljung T, Lundberg S, Varsanyi M, Johansson C, Schmidt PT, Herulf M et al (2006) Rectal nitric oxide as biomarker in the treatment of inflammatory bowel disease: responders versus non responders. World J Gastroenterol 12(21):3386–3392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Liao J, Yang G, Reuhl KR, Hao X, Yang CS (2006) Inhibition of adenoma progression to adenocarcinoma in a 4-methylnitrosamino-1-3-pyridyl-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res 66:11494–11501

    Article  CAS  PubMed  Google Scholar 

  • Lyons CL, Kennedy EB, Roche HM (2016) Metabolic inflammation—differential modulation by dietary constituents. Nutrients 8(5):247

    Article  PubMed Central  Google Scholar 

  • Mazzon E, Muia C, Paola RD, Genvese T, Sarro AD, Suzuki H et al (2005) Green tea polyphenol extract attenuates colon injury induced by experimental colitis. Free Rad Res 39(9):1017–1025

    Article  CAS  Google Scholar 

  • Mbuthia KS, Mreji PO, Ngure RM, Stomeo F, Kyallo M, Muoki C (2017) Tea (Camellia sinensis) infusions ameliorate cancer in 4TI metastatic breast cancer model. BMC Complement Altern Med 17(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay DL, Blumberg JB (2002) The role of tea in human health: an update. J Am Coll Nutr 21:1–13

    Article  CAS  PubMed  Google Scholar 

  • Michielan A, Inca RD (2015) Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm 5:1–10

    Article  Google Scholar 

  • Mizoguchi A (2012) Animal models of inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci 105:263–320

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Oshato K (2003) Dietary green tea intake preserves and improves arterial compliance and endothelial function. J Am Coll of Cardiol 41(6):271–274

    Article  Google Scholar 

  • Naghma K, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81(7):519–533

    Article  Google Scholar 

  • Naseem KM (2005) The role of nitric oxide in cardiovascular disease. Mol Aspects Med 26(1–2):33–65

    Article  CAS  PubMed  Google Scholar 

  • Odenwald MA, Turner JR (2013) Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol 11(9):1075–1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Orner GA, Dashwood WM, Blum CA, Diaz GD, Li Q, Al-Fageeh M et al (2002) Response of Apc(min) and A33 (delta N beta-cat) mutant mice to treatment with tea, sulindac, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mutat Res 506–507:121–127

    Article  PubMed  Google Scholar 

  • Oz HS, Chen TS (2008) Green-tea polyphenols down regulate cyclooxygenase and Bcl-2 activity in acetaminophen-induced hepatotoxicity. Dig Dis Sci 53(11):2980–2988

    Article  CAS  PubMed  Google Scholar 

  • Oz HS, Ebersole JL (2008) Application of pro-drugs to inflammatory diseases of the gut. Mol 13:452–474

    Article  CAS  Google Scholar 

  • Oz HS, Ebersole J (2010) Green tea polyphenols mediate apoptosis in Intestinal Epithelial Cells. J. Cancer Ther 1:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oz HS, McClain CJ, Nagasawa HT, deVilliers WJ, Chen TS (2004) Diverse antioxidant protect against acetaminophen hepatotoxicity. J Mol Toxicol 18(6):361–368

    Article  CAS  Google Scholar 

  • Oz HS, Chen TS, deVilliers WJ (2005) Antioxidants as novel therapy in a murine model of colitis. J Nutr Biochem 16(5):297–304

    Article  CAS  PubMed  Google Scholar 

  • Oz HS, Chen TS, de Villiers WJ (2013) Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front Immunol 4(5):132

    PubMed  PubMed Central  Google Scholar 

  • Pascual V, Pascual Dieli CR, Lopez-PN Bodas A, Medrano LM et al (2014) Inflammatory bowel disease and celiac disease: overlaps and differences. World J Gastroenterol 20(17):4846–4856

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 154(6):495–503

    Article  CAS  PubMed  Google Scholar 

  • Porath D, Riegger D, Drewe J, Schwager J (2005) Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. J Pharmacol Exp Ther 315(3):1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Predonzani A, Calì B, Agnellini AH, Molon B (2015) Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med 5(2):64

    Article  PubMed  PubMed Central  Google Scholar 

  • Rachmilewitz D, Stamler JS, Bachwich D, Karmeli F, Ackerman Z, Podolsky DK (1995) Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Gut 36(5):718–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachmilewitz D, Eliakim R, Ackerman Z, Karmeli F (1998) Direct determination of colonic nitric oxide level–a sensitive marker of disease activity in ulcerative colitis. Am J Gastroenterol 93(3):409–412

    CAS  PubMed  Google Scholar 

  • Raederstorff DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nut Biochem 14(6):326–332

    Article  CAS  Google Scholar 

  • Rafa H, Saoula H, Belkhelfa M, Medjeber O, Soufli I, Toumi R, de Launoit Y, Morales O, Nakmouche M, Delhem N, Touil BC (2013) IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immuno-modulatory effect of retinoic acid. J Interferon Cytokine Res 33(7):355–368

    Article  CAS  PubMed  Google Scholar 

  • Renaud J, Nabavi SF, Daglia M, Nabavi SM, Martinoli MG (2015) Epigallocatechin-3-Gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res 18(3):257–269

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Deczkowska A (2016) Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol 37(10):668–679

    Article  CAS  PubMed  Google Scholar 

  • Shaparoodi H, Hashemi M, Sharif ZN, Moezi L, Janahmadi Z, Dehpour AR (2016) The possible role of nitric oxide and oxidative stress in the enhanced apoptosis of cardiac cells in cirrhotic rats. Acta Med Iran 55(1):29–34

    Google Scholar 

  • Shimizu A, Deguch AK, Joe JF, Mckoy H, Moriwaki IB, Weinstein IB (2005) EGCG inhibits activation of HER3 and expression of cyclooxygenase-2 in human colon cancer cells. J Exp Ther Oncol 5(1):69–78

    PubMed  Google Scholar 

  • Shimizu MO, Shirakai Y, Sakai H, Adachi A, Hata K, Hirose Y et al (2008) The EGCG administration caused a significant decrease in the serum levels of triglyceride mice (-)-epigallocatechin gallate suppresses azoxymethane-induced colonic premalignant lesions in male C57BL/KsJ-db/db mice. Cancer Prev Res (Phila) 1(4):298–304

    Article  CAS  Google Scholar 

  • Shirakami Y, Shimizu M, Tsurumi H, Hara Y, Tanaka T, Moriwaki H (2008) EGCG and polyphenon E attenuate inflammation-related mouse colon carcinogenesis induced by AOM plus DDS. Mol Med Rep 1(3):355–361

    CAS  PubMed  Google Scholar 

  • Silagy CA, McNeil JJ, Donnan Tonkin AM, Worsam K (1993) Adverse effects of low-dose aspirin in a healthy elderly population. Clin Pharmacol Ther 54(1):84–89

    Article  CAS  PubMed  Google Scholar 

  • Sosnowska B, Penson P, Banach M (2017) The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc Diagn Ther 7(1):S21

    Article  PubMed  PubMed Central  Google Scholar 

  • Soufli I, Rafa H, Boukoffa CT (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 7(3):353–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168(5):1059–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephani BCM, Harrison SL, Keage HAD, Babateen A, Robinson L, Siervo M (2017) Cardiovascular disease, the nitric oxide pathway and risk of cognitive impairment and dementia. Curr Cardiol Rep 19(9):87

    Article  Google Scholar 

  • Strober W, Fuss IJ, Blumberg RS (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20(1):495–549

    Article  CAS  PubMed  Google Scholar 

  • Szypuła J, Iwulski P, Kędziora J (2009) Blood platelets the hope for the future. Pol Merk Lek 26(156):587–590

    Google Scholar 

  • Ting A, Chow Y, Tan W (2013) Microbial and heavy metal contamination in commonly consumed traditional Chinese herbal medicines. J Tradit Chin Med 33:119–124

    Article  PubMed  Google Scholar 

  • Tsutsui M, Shimokawa H, Otsuji Y, Yanagihara N (2010) Pathophysiological relevance of NO signaling in the cardiovascular system: novel insight from mice lacking all NO synthases. Pharmacol Ther 128(3):499–508

    Article  CAS  PubMed  Google Scholar 

  • Uceyler N, Schafers M, Sommer C (2009) Mode of action of cytokines on nociceptive neurons. Exp Brain Res 196(1):67–78

    Article  PubMed  Google Scholar 

  • Varilek GW, Yang F, deVillers WJ, Zhong J, Oz HS, Westberry KF et al (2001) Green tea polyphenol extract attenuates inflammation in interleukin-2-deficient mice, a model of autoimmunity. J Nutr 131(7):2034–2039

    Article  CAS  PubMed  Google Scholar 

  • Verhoef MJ, Sutherland LR (1990) Outpatient healthcare utilization of patients with inflammatory bowel disease. Dig Dis Sci 35(10):1276–1280

    Article  CAS  PubMed  Google Scholar 

  • Vuong QV, Golding JB, Nguyen M, Roach PD (2010) Extraction and isolation of catechins from tea. J Sep Sci 33(21):3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Webber C, Andy C, Darren T, Christian S, Rupert L (2017) Medication adherence in inflammatory bowel disease. Intest Res 15(4):434–445

    Article  Google Scholar 

  • Wędrychowicz A, Zajac A, Omasik P (2016) Advances in nutritional therapy in inflammatory bowel diseases: review. World J Gastroenterol 22(3):1045–1066

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisburger JH (1999) Tea and health: the underlying mechanisms. Exp Biol Med 220(4):271–275

    Article  CAS  Google Scholar 

  • Wu P, Jia F, Zhang B, Zhang P (2017) Risk of cardiovascular disease in inflammatory bowel disease (review). Exp Therap Med 13:395–400

    Article  CAS  Google Scholar 

  • Yamamoto T, Juneja LR, Chu DC, Kim M (1997) Chemistry and applications of green tea. CRC Press LLC, USA

    Google Scholar 

  • Yang CS, Wang H (2011) Mechanistic issues concerning cancer prevention by tea catechins. Mol Nutr Food Res 55(6):819–831

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Oz HS, Barve S, de Villers WJ, McClain CJ, Varilek GW (2001) The green tea polyphenols (_)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 60(3):528–533

    CAS  PubMed  Google Scholar 

  • Yang Y, Qin YJ, Chan KP, Chu KO, Chu WK, Kin TN et al (2016) Green tea catechins are potent anti-oxidants that ameliorate sodium iodate-induced retinal degeneration in rats. Sci. Rep 6:29546

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon E, Babar A, Choudhary M, Kutner Pyrsopoulos (2016) Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 4(2):131–142

    PubMed  PubMed Central  Google Scholar 

  • Zhang JC, Xu H, Yuan Y, Chen YJ, Lin Y, Yuan SY (2017) Delayed treatment with green tea polyphenol EGCG promotes neurogenesis after ischemic stroke in adult mice. Mol Neurobiol 54(5):3652–3664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was jointly supported by the National Natural Science Foundation of China (No. 31472250), Postdoctoral Science Fund of Anhui Province (2016B117) and the Project of Modern Agricultural Industry and Technology System of Anhui Province (2016–2020). We wish to thank anonymous reviewers for their kind advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichun Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.U., Li, Y., Huang, Y. et al. Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches. Inflammopharmacol 26, 319–330 (2018). https://doi.org/10.1007/s10787-018-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-018-0462-4

Keywords

Navigation