Skip to main content
Log in

Non-Stationary Plane Problem for a Liquid Layer on a Rigid Base

  • Published:
International Applied Mechanics Aims and scope

An analytical solution is proposed for a plane problem on the action of non-stationary pressure on a layer of compressible fluid. The corresponding linear problem of hydroacoustics is stated. The integral Laplace and Fourier transforms are applied. In the case of a fixed loading domain, the transforms are inverted using tabulated formulas and convolution theorems. As a result, the expressions for speed and pressure at an arbitrary point of the fluid are derived in closed form. The solution is represented as a sum in which the mth term is the mth reflected wave. Retaining a certain finite number of terms in the solution gives the exact solution of the problem on a given time interval taking into account the necessary number of reflected waves. The variation in pressure with time and space coordinates is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bateman and A. Erdelyi, Fourier, Laplace, and Mellin Transforms, Vol. 1 of the two-volume series Tables of Integral Transforms [Russian translation], Nauka, GIFML, Moscow (1969).

  2. H. Bateman and A. Erdelyi, Higher Transcendental Functions, Bessel Functions, Parabolic Cylinder Functions, and Orthogonal Polynomials [Russian translation], Nauka, Moscow (1966).

    Google Scholar 

  3. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  4. J. D. Achenbach, Wave Propagation in Elastic Solids, Elsevier, NY (1973).

    MATH  Google Scholar 

  5. M. C. M. Bakker, B. J. Kooij, and M. D. Verweij, “A knife-edge load traveling on the surface of an elastic halfspace,” Wave Motion, 49, 165–180 (2012).

    Article  Google Scholar 

  6. U. Basu and A. K. Chopra, “Perfectly matched layers for transient elastodynamics of unbounded domains,” Int. J. Numer. Meth. Eng., 59, 1039–1074 (2004).

    Article  MathSciNet  Google Scholar 

  7. U. Basu, Perfectly Matched Layers for Acoustic and Elastic Waves, Research report for the Dam Safety Research Program U.S. Department of the Interior Bureau of Reclamation, Livermore Software Technology Corp., Livermore, California (2008).

    Google Scholar 

  8. A. Bedford and D. S. Drumheller, Introduction to Elastic Wave Propagation, 2nd edition, John Wiley & Sons Ltd., Chichester, England (1994).

    Google Scholar 

  9. A. Bonomo, M. Isakson, and N. Chotiros, “Acoustic scattering from a sand layer and rock substrate with rough interfaces using the finite element method,” J. Acoust. Soc. Am., 135 (2014), DOI: https://doi.org/10.1121/1.4877555.

    Article  ADS  Google Scholar 

  10. L. F. Breese and D. A. Hutchins, “Transient generation of elastic waves in solids by a disk-shaped normal forse source,” J. Acoust. Soc. Am., 86 (2), 810–817 (1989).

    Article  ADS  Google Scholar 

  11. L. Cagniard, Reflection and Refraction of Progressive Waves, McGraw Hill, NY (1962).

    MATH  Google Scholar 

  12. A. De and A. Roy, “Transient response of an elastic half space to normal pressure acting over a circular area on an inclined plane,” J. Eng. Math., 74, 119–141 (2012).

    Article  MathSciNet  Google Scholar 

  13. A. T. De Hoop, “A modification of Cagniard’s method for solving seismic pulse problems,” Appl. Sci. Res., B. 8, 349–356 (1960).

  14. A. T. De Hoop, “The moving-load problem in soil dynamics the vertical displacement approximation,” Wave Motion, 36, 335–346 (2002).

    Article  MathSciNet  Google Scholar 

  15. W. M. Ewing, W. S. Jardetsky, and F. Press, Elastic Waves in Layered Media, McGraw-Hill, NY (1957).

    Book  Google Scholar 

  16. M. Isakson, B. Goldsberry, and N. Chotiros, “A three-dimensional, longitudinally invariant finite element model for acoustic propagation in shallow water waveguides,” J. Acoust. Soc. Am., EL206, 136 (2014), DOI: https://doi.org/10.1121/1.4890195.

    Article  Google Scholar 

  17. V. D. Kubenko, “On a non-stationary load on the surface of a semiplane with mixed boundary conditions,” ZAMM, 95, 1448–1460 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. D. Kubenko, “Non-stationary stress state of an elastic layer at the mixed boundary conditions,” ZAMM, 96, 1442–1456 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  19. V. D. Kubenko, “Nonsteady problem for an elastic half-plane with mixed boundary conditions,” Int. Appl. Mech., 52, No. 2, 105–118 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. D. Kubenko, “Nonstationary deformation of an elastic layer with mixed boundary conditions,” Int. Appl. Mech., 52, No. 6, 563–580 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  21. V. D. Kubenko, “Analytical solution to a non-stationary load on an infinite strip of compressible liquid,” Archive of Appl. Mech., 88, No. 7, 1163–1173 (2018).

    Article  ADS  Google Scholar 

  22. V. D. Kubenko and T. A. Marchenko, “Indentation of a rigid blunt indenter into an elastic layer: plane problem,” Int. Appl. Mech., 44, No. 3, 286–295 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. D. Kubenko and I. V. Yanchevskii, “Nonstationary load on the surface of an elastic half-strip,” Int. Appl. Mech., 51, No. 3, 303–310 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Lamb, “On the propagation of tremors over the surface of an elastic solid,” Philos. Trans. R. Soc. Ser. A, 203, 1–42 (1904).

    Article  ADS  Google Scholar 

  25. F. G. Laturelle, “Finite element analysis of wave propagation in an elastic half-space under step loading,” Comput. Struct., 32, 721–735 (1989).

    Article  Google Scholar 

  26. F. G. Laturelle, “The stresses produced in an elastic half-space by a normal step loading over a circular area: ànalytical and numerical results,” Wave Motion, 12, 107–127 (1190).

    Article  Google Scholar 

  27. G. Lefeuve-Mesgouez, A. Mesgouez, G. Chiavassa, and B. Lombard, “Semianalytical and numerical methods for computing transient waves in 2D acoustic poroelastic stratified media,” Wave Motion, 49, 667–680 (2012).

    Article  MathSciNet  Google Scholar 

  28. V. F. Meish, Yu. A. Meish, and A. I. Mel’nichenko, “Propagation of cylindrical and spherical waves in two-layer soil media,” Int. Appl. Mech., 54, No. 5, 552–558 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Miklowitz, The Theory of Elastic Waves and Waveguides, North-Holl. Publ. Comp., NY (1978).

    Google Scholar 

  30. C. L. Pekeris, “The seismic surface pulse,” Proc. Nat. Acad. Sci., 41, 469–480 (1955).

    Article  ADS  MathSciNet  Google Scholar 

  31. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Inverse Laplace Transforms. Integrals and Series, V. 5, Gordon and Breach, NY (1992).

    MATH  Google Scholar 

  32. A. Roy and A. De, “Exact solution to surface displacement associated with sources distributed on an inclined plane,” Int. J. Eng. Sci. Techn., 2, 137–145 (2011).

    Google Scholar 

  33. A. Stovas and Y. Roganov, Acoustic Waves in Layered Media – From Theory to Seismic Applications. In “Waves in Fluids and Solids,” edited by Prof. Ruben Pico Vila, InTech (2011), www.interchopen.com. DOI: https://doi.org/10.5772/19808.

    Google Scholar 

  34. A. Verruijt, An Introduction to Soil Dynamics, Springer, NY (2010).

    Book  Google Scholar 

  35. I. V. Yanchevskii, “Nonstationary vibrations of electroelastic cylindrical shell in acoustic layer,” Int. Appl. Mech., 54, No. 4 431–442 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Kubenko.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 55, No. 5, pp. 21–38, September–October 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubenko, V.D. Non-Stationary Plane Problem for a Liquid Layer on a Rigid Base. Int Appl Mech 55, 470–486 (2019). https://doi.org/10.1007/s10778-019-00969-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-019-00969-9

Keywords

Navigation