Skip to main content
Log in

Stress–Strain State Near a Hole in a Shear-Compliant Composite Cylindrical Shell with Elliptical Cross-Section

  • Published:
International Applied Mechanics Aims and scope

Static problems for a composite elliptical cylindrical shell with a curved hole are formulated and solved numerically using a developed method. The system of governing equations based on Timoshenko’s refined theory of non-shallow shells and Hooke’s law for orthotropic materials is derived. The method is based on the finite-element method. The influence of the mechanical and geometrical parameters of the shell acted upon by a tensile axial force on the stress, strain, and displacement distributions near a circular hole is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, A. S. Kosmodamianskii, V. P. Shevchenko, et al., Stress Concentration, Vol. 7 of the twelve-volume series Composite Mechanics [in Russian], A.S.K., Kyiv (1998).

  2. Yu. M. Kuznetsov, “The SSS of a noncircular cylindrical shell with a notch subjected to pressure nonuniformly distributed along the length,” in: Proc. Semin. of KFTI KF AN SSSR Investigations on the Theory of Plates and Shells [in Russian], No. 24, Izd. KGU, Kazan (1992), pp. 35–39.

  3. A. N. Guz, I. S. Chenyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

  4. K. J. Bathe and E. N. Dvorkin, “A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation,” Int. J. Numer. Meth. Eng., 21, No. 2, 367–383 (1985).

    Article  Google Scholar 

  5. I. S. Chernyshenko and E. A. Storozhuk, “Inelastic deformation of flexible cylindrical shells with a curvilinear hole,” Int. Appl. Mech., 42, No. 12, 1414–1420 (2006).

    Article  ADS  Google Scholar 

  6. A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Karpov and A. Semenov, “Strength and stability of orthotropic shells,” World Appl. Sci. J., 30, No. 5, 617–623 (2014).

    Google Scholar 

  8. T. A. Kiseleva, Yu. V. Klochkov, and A. P. Nikolaev, “Comparison of scalar and vector FEM forms in the case of an elliptic cylinder,” J. Comp. Math. Math. Phys., 55, No. 3, 422–431 (2015).

    Article  MathSciNet  Google Scholar 

  9. P. S. Lee and K. J. Bathe, “Development of MITC isotropic triangular shell finite elements,” Comp. Struct., 82, No. 11, 945–962 (2004).

    Article  Google Scholar 

  10. V. A. Maximyuk and I. S. Chernyshenko, “Stress state around holes in orthotropic cylindrical shells with allowance for nonlinearly elastic material properties,” Int. Appl. Mech., 27, No. 10, 991–995 (1991).

    ADS  Google Scholar 

  11. E. Oterkus, E. Madenci, and M. Nemeth, “Stress analysis of composite cylindrical shells with an elliptical cutout,” J. Mech. Mater. Struct., 2, No. 4, 695–727 (2007).

    Article  Google Scholar 

  12. W. D. Pilkey and D. D. Pilkey, Peterson’s Stress Concentration Factors, John Wiley & Sons, New York (2008).

    Google Scholar 

  13. K. P. Soldatos, “Mechanics of cylindrical shells with non-circular cross-section: a survey,” Appl. Mech. Rev., 52, No. 8, 237–274 (1999).

    Article  ADS  Google Scholar 

  14. E. A. Storozhuk and I. S. Chernyshenko, “Stress distribution in physically and geometrically nonlinear thin cylindrical shells with two holes,” Int. Appl. Mech., 41, No. 11, 1280–1287 (2005).

    Article  ADS  Google Scholar 

  15. E. A. Storozhuk, I. S. Chernyshenko, and O. V. Pigol, “Elastoplastic state of an elliptical cylindrical shell with a circular hole,” Int. Appl. Mech., 53, No. 6, 647–654 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. E. A. Storozhuk and A. V. Yatsura, “Analytical-numerical solution of static problems for noncircular cylindrical shells of variable thickness,” Int. Appl. Mech., 53, No. 3, 313–325 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. A. Storozhuk and A. V. Yatsura, “Exact solutions of boundary-value problems for noncircular cylindrical shells,” Int. Appl. Mech., 52, No. 4, 386–397 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. R. C. Tennyson, M. Booton, and R. D. Caswell, “Buckling of imperfect elliptical cylindrical shells under axial compression,” AIAA J., 9, No. 2, 250–255 (1971).

    Article  ADS  Google Scholar 

  19. S. Timoshenko, Strength of Materials. Part II, Advanced Theory and Problems, 2nd ed., D. Van Nostrand Company, New York (1941).

  20. F. Tornabene, N. Fantuzzi, M. Bacciocchi, and R. Dimitri, “Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method,” Thin-walled Struct., 97, 114–129 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Storozhuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 5, pp. 78–86, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storozhuk, E.A., Chernyshenko, I.S. & Yatsura, A.V. Stress–Strain State Near a Hole in a Shear-Compliant Composite Cylindrical Shell with Elliptical Cross-Section. Int Appl Mech 54, 559–567 (2018). https://doi.org/10.1007/s10778-018-0909-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0909-8

Keywords

Navigation