Skip to main content
Log in

Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 1

  • Published:
International Applied Mechanics Aims and scope

A modification of control constraints in optimal control problems for a simple pendulum with a movable pivot is substantiated. The problem of time optimal control of the motion of a simple pendulum for the classical and modified constraints is formulated. By analytically integrating the system of equations of motion, the optimization problem is reduced to a nonlinear programming problem with constraints. This problem is solved numerically with the particle swarm method. The proposed method of solving time optimal control problems is generalized to mathematical models that can be integrated analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Gerasimyak and V. A. Leshchev, Analysis and Synthesis of Crane Electromechanical Systems [in Russian], SMIL, Odessa (2008).

    Google Scholar 

  2. O. V. Grigorov, Improvement of the Performance of Crane Mechanisms [in Russian], DSci Thesis: 05.05.05, Kharkov (1995).

  3. Yu. I. Zaitsev, Studying the Nonstationary Oscillations and Optimal Operating Modes of Translating Load-Lifting Machines [in Russian], PhD Thesis, 01.02.06, Kharkov (1981).

  4. L. V. Mel’nikova, Microprocessor-Control Automation of the Displacement of a Mechanism with a Suspended Weight [in Russian], PhD Thesis, 05.09.03, Odessa (2000).

  5. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  6. A. A. Smekhov and N. I. Erofeev, Optimal Control of Carrying-and-Lifting Machines [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  7. P. M. Strel’tsov, Optimization of the Operation of Automated Harbor Cranes and Unloaders [in Russain], PhD Thesis, 05.05.05, Odessa (1994).

  8. A. A. Fel’dbaum and A. G. Butkovskii, Automatic-Control Methods [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  9. F. L. Chernous’ko, L. D. Akulenko, and B. N. Sokolov, Control of Oscillaitons [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  10. E. A. Babenko and A. A. Martynuyk, “Stabilization of the motion of a nonlinear system with interval initial conditions,” Int. Appl. Mech., 52, No. 2, 182–191 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. H. Chen, Y. Fang, and N. Sun, “Optimal trajectory planning and tracking control method for overhead cranes,” IET Control Theory & Applications, 10, No. 6, 692–699 (2016).

    Article  MathSciNet  Google Scholar 

  12. J. J. Da Cruz and F. Leonardi, “Minimum-time anti-swing motion planning of cranes using linear programming,” Opt. Contr. Appl. Meth., 34, No. 2, 191–201 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Ermidoro, S. Formentin, A. Cologni, F. Previdi, and M. S. Savaresi, “On time-optimal anti-sway controller design for bridge cranes,” American Control Conf. (ACC), 2809–2814 (2014).

  14. G. A. Golub, K. Szalay, S. M. Kukharets, and O. A. Marus, “Energy efficiency of rotary digesters,” Progr. Agricult. Eng. Sci., 13, No. 1, 35–49 (2017).

    Google Scholar 

  15. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” IEEE Int. Conf. on Neural Networks, Perth, Australia (1995), pp. 1942–1948.

  16. A. S. Khoroshun, “Stability and speed control of a series-wound DC motor,” Int. Appl. Mech., 52, No. 4, 432–436 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. S. Khoroshun, “Stabilization of the upper equilibrium position of a pendulum by spinning an inertial flywheel,” Int. Appl. Mech., 52, No. 5, 547–556 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V. S. Loveikin, A. P. Liashko, and Y. V. Chovnyuk, “Crane’s vibrating systems controlled by mechatronic devices with magnetorheological fluid: the nonlinear mathematical model of behavior and optimization of work regimes,” Nauk. Vistn. Nats. Girn. Univ., No. 6, 97–102 (2014).

  19. V. S. Loveikin and Yu. O. Romaseych, “Dynamic optimization of a mine winder acceleration mode,” Nauk. Visn. Nats. Girn. Univ., No. 6, 97–102 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Romasevich or A. S. Khoroshun.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 3, pp. 127–115, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loveikin, V.S., Romasevich, Y.A., Khoroshun, A.S. et al. Time-Optimal Control of a Simple Pendulum with a Movable Pivot. Part 1. Int Appl Mech 54, 358–365 (2018). https://doi.org/10.1007/s10778-018-0887-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0887-x

Keywords

Navigation