Skip to main content
Log in

Estimating the Strength of Layered Cylindrical Shells Under Creep

  • Published:
International Applied Mechanics Aims and scope

The stress–strain state and strength of layered hollow cylinders and layered cylindrical shells under creep conditions are determined. The solution for two-layer shells with different thicknesses ratios of layers found using the straight element hypothesis is collated with spatial solutions for axisymmetrically loaded hollow cylinders. The technique of solving the spatial initial–boundary-value problem is based on the combined application of the Ritz and R-function methods and the Runge–Kutta–Merson method for time integration with automatic time step control. The initial–boundary-value problem for shells is also solved using the Runge–Kutta–Merson method in combination with the Runge–Kutta method and Godunov’s discrete orthogonalization method for solving the boundary-value problem at every time step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Brusentsov, et al., “Studying the strength of solid oxide fuel cells of plate shape”, in: Solid Oxide Fuel Cells [in Russian], RF YaTs-VNIITF, Snezhink (2003), pp. 233–240.

  2. A. V. Burlakon, G. I. L’vov, and O. K. Morachkovskii, Long-Term Strength of Shells [in Russian], Vyshchaya Shkola, Kharkov (1981).

    Google Scholar 

  3. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. A. Z. Galishyn and S. N. Sklepus, “Application of shell models for determination of creep and damageability of hollow cylinders,” Zb. Nauch. Prats’ Dneprodzerzhinsk. Derzh. Univ., No. 1(26), 60–70 (2015).

  5. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Stiffness, Vol 4 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kiev (1981).

  6. V. S. Gudramovich, Creep Theory and Its Applications for Design of Elements of Thin-Walled Structures [in Russian], Naukova Dumka, Kiev (2005).

    Google Scholar 

  7. A. A. Zolochkovskii, A. N. Sklepus, and S. N. Sklepus, Nonlinear Solid Mechanics [in Russian], Biznes Investor Grup, Kharkov (2011).

    Google Scholar 

  8. L. M. Kachanov, Fundamentals of Fracture Mechanics [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  9. V. I. Krylov, V. V. Bobkov, and P. I. Monastyrniy, Numerical Methods [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  10. A. M. Lokoshchenko, Creep and Long-Term Strength of Materials [in Russian], Fizmatgiz, Moscow (2015).

    Google Scholar 

  11. A. M. Lokoshchenko, N. E. Pechenina, and S. A. Shesterikov, “Life of cylindrical shells in pure bending under creep,” Prikl. Mat. Mekh., No. 12, 73–78 (1989).

    MATH  Google Scholar 

  12. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    MATH  Google Scholar 

  13. A. O. Rasskazov, I. I. Sokolovskaya, and N. A. Shulga, Theory and Design of Layered Orthotropic Plates and Shells [in Russian], Vyshcha Shkola, Kyiv (1986).

    Google Scholar 

  14. V. L. Rvachov, Theory of R-Functions and Some Its Applications [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  15. Yu. N. Shevchenko, M. E. Babeshko, and R. G. Tereknov, Thermal Viscoelastoplastic Processes in Complex Deformation of Structural Elements [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  16. H. Altenbach and K. Naumenko, “Shear correction factors in creep-damage analysis of beams, plates and shells,” JSME Int. J. Ser. A , 45, No. 1, 77–83 (2002).

    Article  ADS  Google Scholar 

  17. H. Altenbach, K. Morachkovsky, K. Naumenko, and A. Sychov, “Zum Kriechen dunner Rotationsschalen unter Einbeziehung geometrisher Nichtlinearitat sowie der Asymmetrie der Werkstoffeigenschaften,” Forschung im Ingenieurwesen, 62, No. 3, 47–57 (1996).

    Article  Google Scholar 

  18. A. Galishin, A. Zolochevsky, A. Kühhorn, and M. Springmannm, “Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Numerical modeling,” Techn. Mech., 29, No. 1, 48–59 (2009).

    Google Scholar 

  19. A. Z. Galishin, “Determination of tangential stresses in axisymmetrically loaded layered shells of revolution in inelastic nonisothermal deformation processes,” Int. Appl. Mech., 29, No. 8, 637–644 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Z. Galishin, “Axisymmetric thermoviscoelastoplastic state of thin laminated shells made of a damageable material,” Int. Appl. Mech., 44, No. 4, 431–441 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Naumenko, “On the use of the first order shear deformation models of beams, plates and shells in creep lifetime estimations,” Tech. Mech., 20, No. 3, 215–226 (2000).

    Google Scholar 

  22. Yu. N. Shevchenko and A. Z. Galishin, “Determination of the axially symmetric geometrically nonlinear thermoviscoelastoplastic state of thin layered shells with regard for the damageability of the material,” J. Math. Sci., 162, No. 2, 216–230 (2009).

    Article  Google Scholar 

  23. Yu. N. Shevchenko, A. Z. Galishin, and M. E. Babeshko, “Thermoviscoelastoplastic deformation of compound shells of revolution made of a damageable material,” Int. Appl. Mech., 51, No. 6, 607–613 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. M. Sklepus, “Solution of the axisymmetric problem of creep and damage for a piecewise homogeneous body with an arbitrary shape of a meridian section,” J. Math. Sci., 205, No. 5, 644–658 (2015).

    Article  MathSciNet  Google Scholar 

  25. A. Zolochevsky, S. Sklepus, A. Galishin, A. Kühhorn, and M. Kober, “A comparison between the 3D and the Kirchhoff–Love solutions for cylinders under creep-damage conditions,” Tech. Mech., 34, No. 2, 104–113 (2014).

    Google Scholar 

  26. A. Zolochevsky, A. Galishin, S. Sklepus, L. Parkhomenko, V. Gnitko, A. Kühhorn, M. Kober, and C. Leyens, “Benchmark creep tests for thermal barrier coating,” Vestnik NTU “KhPI”, No. 23, 159–179 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. Galishin.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 1, pp. 78–89, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galishin, A.Z., Sklepus, S.N. Estimating the Strength of Layered Cylindrical Shells Under Creep. Int Appl Mech 54, 64–74 (2018). https://doi.org/10.1007/s10778-018-0860-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0860-8

Keywords

Navigation