Skip to main content
Log in

Holographic F(Q,T) Gravity with Lambert Solution

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we study a model of holographic dark energy using FLRW cosmology in the context of modified gravity. An extension of the symmetric teleparallel gravity is obtained by considering the gravitational action L is given by an arbitrary function f of the non-metricity Q, where the nonmetricity Q is responsible for the gravitational interaction, and of the trace of the matter-energy-momentum tensor T, so that \(L=f(Q,T)\). We expand on the features of the derived cosmological model in view of the relation between cosmic time and redshift as \(t(z)=\frac{kt_{0}}{b}f(z)\) where \(f(z)=W\left[ \frac{b}{k}e^{\frac{b-ln(1+z)}{k}} \right] \) and W denotes the Lambert function, and discuss the evolution trajectories of the equation of state parameter and deceleration parameters in the evolving universe using a special then a generalized version of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Hanany, S., et al.: MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10’-5. Astrophys. J. 545, L5 (2000)

    Article  ADS  Google Scholar 

  3. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  4. Domínguez, A., Prada, F.: Measurement of the expansion rate of the universe from delta-ray attenuation. Astrophys. J. Lett. 771(2), L34 (2013)

    Article  ADS  Google Scholar 

  5. Tamanini, N., Caprini, C., Barausse, E., Sesana, A., Klein, A., Petiteau, A.: Science with the space-based interferometer eLISA. III: Probing the expansion of the Universe using gravitational wave standard sirens. J. Cosmol. Astropar. Phys. 2016(04), 002 (2016)

    Article  Google Scholar 

  6. Bennett, C.L., Bay, M., Halpern, M., Hinshaw, G., Jackson, C., Jarosik, N., Wright, E.L., et al.: The microwave anisotropy probe* mission. Astrophys. J. 583(1), 1 (2003)

    Article  ADS  Google Scholar 

  7. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Armendariz, P., Christian, Mukhanov, V.M., Paul, J.S.: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  9. Jamil, M., Myrzakulov, Y., Razina, O., Myrzakulov, R.: Modified Chaplygin gas and solvable F-essence cosmologies. Astrophys. Space Sci. 336, 315–325 (2011)

    Article  ADS  Google Scholar 

  10. Nojiri, S.I., Odintsov, S.D.: Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 562(3–4), 147–152 (2003)

    Article  ADS  Google Scholar 

  11. Nojiri, S.I., Odintsov, S.D.: Unified cosmic history in modified gravity: from F (R) theory to Lorentz non-invariant models. Phys. Rep. 505(2–4), 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nojiri, S.I., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4(01), 115–145 (2007)

    Article  MathSciNet  Google Scholar 

  13. Harko, T., et al.: f(R, T) gravity. Phys. Rev. D 84, 024020 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bhattacharjee, S., Sahoo, P.K.: Baryogenesis in f(Q, T) gravity. Eur. Phys. J. C 80, 289 (2020)

    Article  ADS  Google Scholar 

  15. Shekh, S.H.: Models of holographic dark energy in f (Q) gravity. Phys. Dark Universe 33, 100850 (2021)

    Article  Google Scholar 

  16. Koussour, M., Shekh, S.H., Filali, H., Bennai, M.: Barrow holographic dark energy models in f (Q) symmetric teleparallel gravity with Lambert function distribution. Int. J. Geom. Methods Mod. Phys. 20(02), 2350019 (2023)

    Article  MathSciNet  Google Scholar 

  17. Shekh, S.H., Moraes, P.H., Sahoo, P.K.: Physical acceptability of the Renyi, tsallis, and Sharma-Mittal holographic dark energy models in the f (T, B) gravity under Hubble’s cutoff. Universe 7(3), 67 (2021)

    Article  ADS  Google Scholar 

  18. Adak, M.: The symmetric teleparallel gravity. Turk. J. Phys. 30(5), 379–390 (2006)

    MathSciNet  Google Scholar 

  19. Wang, S., Wang, Y., Li, M.: Holographic dark energy. Phys. Reports 696, 1–57 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, M.: A model of holographic dark energy. Phys. Lett. B 603(1–2), 1–5 (2004)

    Article  ADS  Google Scholar 

  21. Bekenstein J.D.: Black holes and entropy. Phys. Rev. D (1973)

  22. Hooft, G.T.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727–745 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  23. Xu, Y., Li, G., Harko, T., Liang, S.D.: f (Q, T) gravity. Eur. Phys. J. C 79, 1–19 (2019)

    Article  ADS  Google Scholar 

  24. Das, S., Mandal, S.: Aspects of cosmology in symmetric teleparallel f (Q, T) Gravity. arXiv:2306.14912 (2023)

  25. El Bourakadi, K., Koussour, M., Otalora, G., Bennai, M., Ouali, T.: Constant-roll and primordial black holes in f (Q, T) gravity. Phys. Dark Universe 41, 101246 (2023)

    Article  Google Scholar 

  26. Arora, S., Sahoo, P.K.: Energy conditions in f (Q, T) gravity. Phys. Scripta 95(9), 095003 (2020)

    Article  ADS  Google Scholar 

  27. Fischler, W., Susskind, L.: Holography and cosmology. arXiv:hep-th/9806039 (1998)

  28. Harko, T., Lobo, F. S. (2018). Extensions of f (R) Gravity: curvature-matter couplings and hybrid metric-Palatini theory, vol. 1. Cambridge University Press

  29. Koussour, M., Filali, H., Shekh, S.H., Bennai, M.: Holographic dark energy in Gauss-Bonnet gravity with Granda-Oliveros cut-off. Nuclear Phys. B 978, 115738 (2022)

    Article  MathSciNet  Google Scholar 

  30. Nojiri, S.I., Odintsov, S.D.: Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy. Gen. Relativ. Gravit. 38, 1285–1304 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. Nojiri, S.I., Odintsov, S.D., Paul, T.: Different faces of generalized holographic dark energy. Symmetry 13(6), 928 (2021)

    Article  ADS  Google Scholar 

  32. Myrzakulov, N., Koussour, M., Alfedeel, A.H., Elkhair, H.M.: Cosmological implications of the constant jerk parameter in f (Q, T) gravity theory. Chin. J. Phys. 86, 300–312 (2023)

    Article  MathSciNet  Google Scholar 

  33. Arora, S., Parida, A., Sahoo, P.K.: Constraining effective equation of state in f (Q, T) gravity. Eur. Phys. J. C 81, 1–7 (2021)

    Article  ADS  Google Scholar 

  34. Pan, S., Mukherjee, A., Banerjee, N.: Mon. Not. R. Astron. Soc. 477, 1189 (2018)

    Article  ADS  Google Scholar 

  35. Mandal, S., Bhattacharjee, S., Pacif, S.K.J., Sahoo, P.K.: Phys. Dark Univ. 28, 100551 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author H.F wrote the main manuscript text and prepared the figures, M.K provided the original idea and parts of the analysis of the results, M.B and R.A contributed by overall review of the results and conclusions. All authors reviewed the manuscript.

Corresponding author

Correspondence to Houda Filali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filali, H., Koussour, M., Bennai, M. et al. Holographic F(Q,T) Gravity with Lambert Solution. Int J Theor Phys 63, 104 (2024). https://doi.org/10.1007/s10773-024-05643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05643-6

Keywords

Navigation