Skip to main content
Log in

Violation of Bell’s Inequality in the Clauser-Horne-Shimony-Holt Form with Entangled Quantum States Revisited

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Scientific imagination and experimental ingenuity are at the heart of physics. One of the most known instances where this interplay between theory (i.e., foundations) and experiments (i.e., technology) occurs is in the discussion of Bell’s inequalities. In this paper, we present a revisitation of the violation of Bell’s inequality in the Clauser-Horne-Shimony-Holt (CHSH) form with entangled quantum states. First, we begin with a discussion of the 1935 Einstein-Podolski-Rosen (EPR) paradox (i.e., incompleteness of quantum mechanics) that emerges from putting the emphasis on Einstein’s locality and the absolute character of physical phenomena. Second, we discuss Bell’s 1971 derivation of the 1969 CHSH form of the original 1964 Bell inequality in the context of a realistic local hidden-variable theory (RLHVT). Third, identifying the quantum-mechanical spin correlation coefficient with the RLHVT one, we follow Gisin’s 1991 analysis to show that quantum mechanics violates Bell’s inequality when systems are in entangled quantum states. For pedagogical purposes, we show how the extent of this violation depends both on the orientation of the polarizers and the degree of entanglement of the quantum states. Fourth, we discuss the basics of the experimental verification of Bell’s inequality in an actual laboratory as presented in the original 1982 Aspect-Grangier-Roger (AGR) experiment. Finally, we provide an outline of some essential take home messages from this wonderful example of physics at its best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    ADS  MathSciNet  Google Scholar 

  2. Corda, C.: Dark energy and dark matter like intrinsic curvature in extended gravity. Viability through gravitational waves. New Adv. Phys. 7, 67 (2013)

  3. Landau, L.D., Lifshitz, E. M.: The Classical Theory of Fields. Pergamon Press Ltd. (1971)

  4. Corda, C.: Interferometric detection of gravitational waves: The definitive test for general relativity. Int. J. Mod. Phys. D 18, 2275 (2009)

    ADS  Google Scholar 

  5. Bekenstein, J. D.: Quantum black holes as atoms, in Proceedings of th Eight Marcel Grossmann Meeting, T. Piran and R. Ruffini, eds., pp. 92-111, World Scientific Singapore (1999)

  6. Pais, A.: Subtle Is the Lord: The Science and the Life of Albert Einstein, Oxford University Press (2005)

  7. Sakurai, J.J.: Modern Quantum Mechanics. The Benjamin/Cummings Publishing Company, Inc. (1985)

  8. Colella, R., Overhauser, A.W., Werner, S.A.: Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472 (1975)

    ADS  Google Scholar 

  9. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H, Feeman and Company (1973)

    Google Scholar 

  10. Brukner, C.: Quantum causality. Nat. Phys. 10, 259 (2014)

    Google Scholar 

  11. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    ADS  Google Scholar 

  12. Bohr, N.: Causality and complementarity. Philos. Sci. 4, 289 (1937)

    Google Scholar 

  13. Bohr, N.: On the notions of causality and complementarity. Science 111, 51 (1950)

    ADS  Google Scholar 

  14. Wheeler, J.A.: No fugitive and cloistered virtue- A tribute to Niels Bohr. Phys. Today 16, 30 (1963)

    ADS  Google Scholar 

  15. Vaccaro, J.A.: Group theoretic formulation of complementarity (2010). arXiv:quant-ph/1012.3532

  16. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  Google Scholar 

  17. Omnes, R.: The Interpretation of Quantum Mechanics. Princeton University Press (1994)

  18. Bohm, D.: Quantum Theory. Prentice-Hall, Englewood Cliffs, New Jersey (1951)

    Google Scholar 

  19. Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070 (1957)

    ADS  MathSciNet  Google Scholar 

  20. Laloe, F.: Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems. Am. J. Phys. 69, 655 (2012)

    ADS  Google Scholar 

  21. Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745 (1978)

    ADS  Google Scholar 

  22. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    ADS  MathSciNet  Google Scholar 

  23. Calmet, X., Hsu, S.D.H.: A brief history of Hawking’s information paradox. Eur. Phys. Lett. 139, 49001 (2022)

    ADS  Google Scholar 

  24. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    MathSciNet  Google Scholar 

  25. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A 154, 201 (1991)

    ADS  MathSciNet  Google Scholar 

  26. Cafaro, C., Ali, S.A., Giffin, A.: On the violation of Bell’s inequality for all non-product quantum states. Int. J. Quantum Inf. 14, 1630003 (2016)

    MathSciNet  Google Scholar 

  27. Private communication between C. C. and Elena R. Loubenets and, later, between C. C. and Yanjun He

  28. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)

    ADS  Google Scholar 

  29. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podoslky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982)

    ADS  Google Scholar 

  30. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic Publishers (1995)

  31. Peres, A.: Quantum information and general relativity (2004). arXiv:quant-ph/0405127

  32. Stapp, H.P.: Bell’s theorem and world process. Il Nuovo Cimento 29, 270 (1975)

    Google Scholar 

  33. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press (2004)

  34. Gisin, N., Peres, A.: Maximal violation of Bell’s inequality for arbitrary large spin. Phys. Lett. A 162, 15 (1992)

    ADS  MathSciNet  Google Scholar 

  35. Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum Computing. Oxford University Press (2007)

  36. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    ADS  MathSciNet  Google Scholar 

  37. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    ADS  Google Scholar 

  38. Leach, J., Jack, B., Romero, J., Ritsch-Marte, M., Boyd, R.W., Jha, A.K., Barnett, S.M., Franke-Arnold, S., Padgett, M.J.: Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces. Opt. Express 17, 8287 (2009)

    ADS  Google Scholar 

  39. Dunningham, J., Vedral, V.: Introductory Quantum Physics and Relativity. Imperial College Press (2011)

  40. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

  41. Cafaro, C., Mancini, S.: Characterizing the depolarizing quantum channel in terms of Riemannian geometry. Int. J. Geom. Methods Mod. Phys. 9, 1260020 (2012)

    MathSciNet  Google Scholar 

  42. Cafaro, C., Mancini, S.: Quantum stabilizer codes for correlated and asymmetric depolarizing errors. Phys. Rev. A 82, 012306 (2010)

    ADS  Google Scholar 

  43. Cafaro, C., van Loock, P.: Approximate quantum error correction for generalized amplitude-damping errors. Phys. Rev. A 89, 022316 (2014)

    ADS  Google Scholar 

  44. Cafaro, C., Ray, S., Alsing, P.M.: Optimal-speed unitary quantum time evolutions and propagation of light with maximal degree of coherence. Phys. Rev. A 105, 052425 (2022)

    ADS  MathSciNet  Google Scholar 

  45. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    ADS  Google Scholar 

  46. Wu, C.S., Shaknov, I.: The angular correlation of scattered annihilation radiation. Phys. Rev. 77, 136 (1950)

    ADS  Google Scholar 

  47. Kocher, C.A., Commins, E.D.: Polarization correlation of photons emitted in an atomic cascade. Phys. Rev. Lett. 18, 575 (1967)

    ADS  Google Scholar 

  48. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972)

    ADS  Google Scholar 

  49. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    ADS  Google Scholar 

  50. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    ADS  MathSciNet  Google Scholar 

  51. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998)

    ADS  MathSciNet  Google Scholar 

  52. Aspect, A.: Bell’s inequality test: More ideal than ever. Nature 398, 189 (1999)

    ADS  Google Scholar 

  53. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

  54. Larsson, J.-Å.: Loopholes in Bell inequality tests of local realism. J. Phys. A: Math. Theor. 47, 424003 (2014)

    MathSciNet  Google Scholar 

  55. Aspect, A.: Three experimental tests of Bell’s inequalities with entangled photons. Ph.D. thesis No. 2674, Universite de Paris-Sud, Centre d’Orsay, France (1983)

  56. Khrennikov, A.: Contexuality, complementarity, signaling, and Bell tests. Entropy 24, 1380 (2022)

  57. Adenier, G., Khrennikov, A.Y.: Is the fair sampling assumption supported by EPR experiments? J. Phys. B40, 131 (2007)

  58. Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891 (1998)

    ADS  MathSciNet  Google Scholar 

  59. Zeilinger, A.: Quantum entanglement: A fundamental concept finding its applications. Phys. Scr. T76, 203 (1998)

    ADS  MathSciNet  Google Scholar 

  60. Brukner, C., Zukowski, M., Zeilinger, A.: The essence of entanglement. In: Quantum Arrangements, Fundamental Theories of Physics Book Series, Springer, vol. 203, pp. 117–138 (2021)

  61. Phillips, W.D., Dalibard, J.: Experimental tests of Bell’s inequalities: A first-hand account by Alain Aspect. Eur. Phys. J. D 77, 8 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

C. Cafaro thanks Ariel Caticha, Domenico Felice, Nicholas Gisin, Yanjun He, and Elena R. Loubenets for valuable comments and helpful electronic mail exchanges throughout the last years that helped shaping this paper in its current form.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C.C.; Writing-original draft, C.C., Ch.C., P.C., and A.B..; Writing—review and editing, C.C., Ch.C., P.C., and A.B.. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Carlo Cafaro.

Ethics declarations

Competing interests

C.C. is an editorial board member of the Int. J. Theor. Phys.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cafaro, C., Corda, C., Cairns, P. et al. Violation of Bell’s Inequality in the Clauser-Horne-Shimony-Holt Form with Entangled Quantum States Revisited. Int J Theor Phys 63, 112 (2024). https://doi.org/10.1007/s10773-024-05627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05627-6

Keywords

PACS

Navigation