Skip to main content
Log in

Multi-valued Quantum Neurons

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The multiple-valued quantum logic is formulated systematically such that the truth values are represented naturally as unique roots of unity placed on the unit circle. Consequently, multi-valued quantum neuron (MVQN) is based on the principles of multiple-valued threshold logic over the field of complex numbers. The training of MVQN is reduced to the movement along the unit circle. A quantum neural network (QNN) based on multi-valued quantum neurons can be constructed with complex weights, inputs, and outputs encoded by roots of unity and an activation function that maps the complex plane into the unit circle. Such neural networks enjoy fast convergence and higher functionalities compared with quantum neural networks based on binary input with the same number of neurons and layers. Our construction can be used in analyzing the energy spectrum of quantum systems. Possible practical applications can be found using the quantum neural networks built from orbital angular momentum (OAM) of light or multi-level systems such as molecular spin qudits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Let V be a vector space over a field F equipped with a bilinear form B. We define f to be left-orthogonal to g and g to be right-orthogonal to f if \(B(f,g)=0\)

References

  1. Kak, S.C.: Quantum neural computing. Adv. Imaging Electron Phys. 94, 259 (1995)

    Article  Google Scholar 

  2. Vlasov, A.Y.: Quantum computations and images recognition. Contribution to: 3rd International Workshop on Quantum Communication and Measurement (QCM 96), quant-ph/9703010

  3. Zak, M., Williams, C.P.: Quantum neural nets. Int. J. Theor. Phys. 37(2), 651 (1998)

    Article  MathSciNet  Google Scholar 

  4. Altaisky, M.V.: Quantum neural network, arXiv:quant-ph/0107012

  5. Zhou, R., Ding, Q.: Quantum M-P neural network. Int. J. Theor. Phys. 46, 3209–3215 (2007)

    Article  Google Scholar 

  6. da Silva, A.J., de Oliveira, W.R., Ludermir, T.B.: Classical and superposed learning for quantum weightless neural networks. Neurocomputing 75(1), 52–60 (2012)

    Article  Google Scholar 

  7. Siomau, M.: A quantum model for autonomous learning automata. Quantum Inf. Process. 13(5), 1211–1221 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a quantum neural network. Quantum Inf. Process. 13, 2567–2586 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wittek, P.: Quantum machine learning: What Quantum Computing Means to Data Mining, Elsevier (2014)

  10. Schuld, M., Sinayskiy, I., Petruccione, F.: Simulating a perceptron on a quantum computer. Phys. Lett. A 379(7), 660–663 (2015)

    Article  CAS  Google Scholar 

  11. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain. Rep. Prog. Phys. 81, 7 (2018)

    Article  Google Scholar 

  13. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019)

    Article  CAS  Google Scholar 

  14. de Paula Neto, F.M., Ludermir, T.B., de Oliveira, W.R., da Silva, A.J.: Implementing any nonlinear quantum neuron. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3741–3746 (2019)

    Article  MathSciNet  PubMed  Google Scholar 

  15. Jia, Z.-A., Yi, B., Zhai, R., Wu, Y.-C., Guo, G.-C., Guo, G.-P.: Quantum neural network states: a brief reviewof methods and applications. Adv. Quantum Technol. 2(7–8), 1800077 (2019)

    Article  Google Scholar 

  16. Mangini, S., Tacchino, F., Gerace, D., Macchiavello, C., Bajoni, D.: Quantum computing model of an artificial neuron with continuously valued input data. Mach. Learn. Sci. Technol. 1, 045008 (2020)

    Article  Google Scholar 

  17. Beer, K., Bondarenko, D., Farrelly, T., et al.: Training deep quantum neural networks. Nat. Commun. 11, 808 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abbas, A., Sutter, D., Zoufal, C., et al.: The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409 (2021)

    Article  PubMed  Google Scholar 

  19. Muthukrishnan, A., Stroud, C.R., Jr.: Multi-valued logic gates for quantum computation. Phys. Rev. A 62, 052309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wang, Y., Hu, Z., Sanders, B.C., Kais, S.: Qudits and high-dimensional quantum computing. Front. Phys. 8, 479. 10.3389 (2020)

  21. Di, Yao-Min., Wei, Hai-Rui.: Synthesis of multivalued quantum logic circuits by elementary gates. Phys. Rev. A 87, 012325 (2013)

    Article  ADS  Google Scholar 

  22. Neeley, M., et al.: Emulation of a quantum spin with a superconducting phase qudit. Science 325(5941) (2009)

  23. Carretta, S., Zueco, D., Chiesa, A., Gómez-León, Á., Luis, F.: A perspective on scaling up quantum computation with molecular spins. Appl. Phys. Lett. 118, 240501 (2021)

    Article  ADS  CAS  Google Scholar 

  24. Brousentsov, N.P., Maslov, S.P., Rosin, V.P., Tishulina, A.M.: Small digital computing machine ”Setun”. Moscow State Univ., (1965). (In Russian)

  25. Hurst, S.L.: Multiple-valued logic-its status and its future. IEEE Trans. Comput. c-33(12), (1984)

  26. Micheel, L.J., Taddiken, A.H., Seabaugh, A.C.: Multiple-valued logic computation circuits using micro- and nanoelectronic devices. IEEE Proceedings of the Twenty-Third International Symposium on Multiple-Valued Logic, Sacramento, CA, USA (1993)

  27. Pu, F., Ren, J., Yang, X., Qu, X.: Multivalued logic gates based on DNA. Chem. - Eur. J. 17, 9590–9594 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Sandhie, Z.T., Patel, J.A., Ahmed, F.U., Chowdhury, M.H.: Investigation of multiple-valued logic technologies for beyond binary era. ACM Comput. Surv. 54, 16 (2021)

    Google Scholar 

  29. Kim, K.R., Jeong, J.W., Choi, Y.-E., Kim, W.-S., Chang, J.: Multi-valued logic device technology: Overview, status, and its future of peta-scale information density. J. Semicond. Eng. 1, 57–63 (2020)

    CAS  Google Scholar 

  30. Perkowski, M.A.: Multiple-Valued Quantum Circuits and Research Challenges for Logic Design and Computational Intelligence Communities. IEEE Computational Intelligence Society (2005)

  31. Brown, A.R., Susskind, L.: Complexity geometry of a single qubit. Phys. Rev. D 100, 046020 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Birkhoff, G., Von Neumann, J.: The Logic of Quantum Mechanics. Annals of Mathematics, Second Series, vol. 37, No. 4, pp. 823–843 (Oct., 1936)

  33. Aizenberg, I.N., Aizenberg, N.N., Vandewalle, J.: Multiple-valued threshold logic and multi-valued neurons. In: Multi-Valued and Universal Binary Neurons. Springer, Boston, MA (2000)

  34. Hall, B.C.: Holomorphic methods in analysis and mathematical physics. Contemp. Math. 260, 1–59 (2000)

  35. AlMasri, M.W., Wahiddin, M.R.B.: Bargmann representation of quantum absorption refrigerators. Rep. Math. Phys. 89(2), 185–198 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  36. AlMasri, M.W., Wahiddin, M.R.B.: Quantum decomposition algorithm for master equations of stochastic processes: The damped spin case. Mod. Phys. Lett. A 37(32), 2250216 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  37. AlMasri, M.W., Wahiddin, M.R.B.: Integral transforms and PT-symmetric Hamiltonians. Chin. J. Phys. 85, 127–134 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  38. Aizenberg, I., Moraga, C.: Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Comput. 11, 169–183 (2007)

    Article  Google Scholar 

  39. Aizenberg, I.: Solving the XOR and parity N problems using a single universal binary neuron. Soft Comput. 12, 15–222 (2008)

    Google Scholar 

  40. Aizenberg, I.N.: Complex-Valued Neural Networks with Multi-Valued Neurons. Springer-Verlag, Berlin Heidelberg (2011)

    Book  Google Scholar 

  41. Hirose, K.: Complex-Valued Neural Networks, 2nd edn. Springer-Verlag, Berlin Heidelberg (2012)

    Book  Google Scholar 

  42. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Martínez-Pérez, M.J., Cardona-Serra, S., Schlegel, C., Moro, F., Alonso, P.J., Prima-García, H., Clemente-Juan, J.M., Evangelisti, M., Gaita-Ariño, A., Sesé, J., van Slageren, J., Coronado, E., Luis, F.: Gd-based single-ion magnets with tunable magnetic anisotropy: molecular design of spin qubits. Phys. Rev. Lett. 108, 247213 (2012)

    Article  ADS  PubMed  Google Scholar 

  44. Jenkins, M.D., Duan, Y., Diosdado, B., García-Ripoll, J.J., Gaita-Ariño, A., Giménez-Saiz, C., Alonso, P.J., Coronado, E., Luis, F.: Coherent manipulation of three-qubit states in a molecular single-ion magnet. Phys. Rev. B 95, 064423 (2017)

    Article  ADS  Google Scholar 

  45. Gaita-Ariño, A., Luis, F., Hill, S., et al.: Molecular spins for quantum computation. Nat. Chem. 11, 301–309 (2019)

    Article  PubMed  Google Scholar 

  46. Carretta, S., Zueco, D., Chiesa, A., Gómez-León, Á., Luis, F.: A perspective on scaling up quantum computation with molecular spins. Appl. Phys. Lett. 118, 240501 (2021)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

M. W. AlMasri wrote the main manuscript text.

Corresponding author

Correspondence to M. W. AlMasri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMasri, M.W. Multi-valued Quantum Neurons. Int J Theor Phys 63, 39 (2024). https://doi.org/10.1007/s10773-024-05569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05569-z

Navigation