Skip to main content
Log in

Effects of Topological Defects and AB Fields on the Thermal Properties, Persistent Currents and Energy Spectra with an Exponential-Type Pseudoharmonic Potential

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Schrodinger equation with exponential-type pseudo-harmonic oscillator in the global monopole space-time is solved using extended Nikiforov-Uvarov (ENU) method. The energy spectrum of the Klein-Gordon oscillator for the exponential-type pseudo-harmonic oscillator is obtained in closed form, and the corresponding wave function is determined using the biconfluent Heun differential equation. Special cases are deduced and some graphical results are shown to illustrate the variation of the energy levels with topological defect, screening parameter, magnetic field flux, and quantum numbers. In addition, the thermodynamic function expressions for the exponential-type pseudo-harmonic oscillator are obtained in closed form, and their variations with temperature are discussed extensively for various values of the potential and Klein-Gordon oscillator parameters. Our results agree with those obtained in the literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. Authors Comments: All data included in this manuscript are available on request by contacting the corresponding author. This manuscript has associated data in a data repository.

References

  1. Hiscock, W.A.: Exact gravitational field of a string. Phys. Rev. D. 31, 3288–3290 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  2. Linet, B.: Gen. Relativ. Gravit. 17, 1109 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Vilenkin, E.P.S. Shellard: Strings and Other Topological Defects (Cambrigde University Press, Cambridge, 1994)

  4. Vilenkin, A.: Phys. Lett. B. 133, 177 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. Vilenkin, A.: Phys. Rep. 121, 263 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barriola, M., Vilenkin, A.: Phys. Rev. Lett. 63, 341 (1989)

    Article  ADS  Google Scholar 

  7. Zare, S., Hassanabadi, H., de Montigny, M.: Gen. Relativ. Grav. 52, 25 (2020)

    Article  ADS  Google Scholar 

  8. Cavalcanti de Oliveira, A.L., Bezerra de Mello, E.R.: Class. Quantum Gravity. 23, 5249 (2006)

    Article  ADS  Google Scholar 

  9. Bezerra de Mello, E.R., Furtado, C.: Phys. Rev. D. 56, 1345 (1997)

    Article  ADS  Google Scholar 

  10. Carvalho, J., Carvalho, A.M., Furtado, C.: Eur. Phys. J. C.74,2935, (2014)

  11. Vitória, R.L.L., Belich, H.: Phys. Scr. 94, 125301 (2019)

    Article  ADS  Google Scholar 

  12. Bezerra de Mello, E.R., Furtado, C.: Phys. Rev. D. 56, 1345 (1997)

    Article  ADS  Google Scholar 

  13. Marques, G.A., Bezerra, V.B.: Class. Quantum Gravity. 19, 985 (2002)

    Article  ADS  Google Scholar 

  14. Cavalcanti de Oliveira, A.L., Bezerra de Mello, E.R.: Int. J. Mod. Phys. A. 18, 3175 (2003)

    Article  ADS  Google Scholar 

  15. Cavalcanti de Oliveira, A.L., Bezerra de Mello, E.R.: Class. Quantum Gravity. 23, 5249 (2006)

    Article  ADS  Google Scholar 

  16. Bezerra de Mello, E.R.: Braz. J. Phys. 31, 211 (2001)

    Article  ADS  Google Scholar 

  17. Lambaga, R.D., Ramadhan, H.S.: Eur. Phys. J. C. 78, 436 (2018)

    Article  ADS  Google Scholar 

  18. Boumali, A., Aounallah, H.: Revista Mexicana de Física. 66(2), 192 (2020)

    Article  MathSciNet  Google Scholar 

  19. Bragança, E.A.F., Vitória, R.L.L., Belich, H., Bezerra de Mello, E.R.: Eur. Phys. J. C. 80, 206 (2020)

    Article  ADS  Google Scholar 

  20. Katanaev, M.O., Volovich, I.V.: Ann. Phys. (NY). 216, 1 (1992)

    Article  ADS  Google Scholar 

  21. Vitória, R.L.L., Belich, H.: Phys. Scr. 94, 125301 (2019)

    Article  ADS  Google Scholar 

  22. Volterra, V.: Ann. Sci. Éc. Norm. Supér. 24, 401 (1907)

    Article  Google Scholar 

  23. Karayer, H., Demirhan, D., Buyukkukihc, F.: J. Math. Phys. 56, 06350 (2015)

    Article  Google Scholar 

  24. Ikot, A.N., Obagboye, L.F., Okorie, U.S., Inyang, E.P., Amadi, P.O., Okon, I.B.: Abdel-Haleem Abdel-Aty. Eur. Phys. J. Plus. 137, 1370 (2022)

    Article  Google Scholar 

  25. Alrebdi, H.I., Ikot, A.N., Okorie, U.S., Obagboye, L.F., Horchani, R., Abdel-Aty, A.-H.: Phys. Scr. 98, 015712 (2023)

    Article  ADS  Google Scholar 

  26. Ahmed, F.: Euro. Phys. Lett. 131, 30002 (2020)

    Article  ADS  Google Scholar 

  27. Greene, R.L., Aldrich, C.: Phys. Rev. 14, 2363 (1976)

    Article  ADS  Google Scholar 

  28. Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Int. J. Theor. Phys. 47, 1039 (2008)

    Article  Google Scholar 

  29. Ikot, A.N., Lutfuoglu, B.C., Ngwueke, M.I., Udoh, M.E., Zare, S., Hassanabadi, H.: Eur. Phys. J. Plus. 131, 419 (2016)

    Article  Google Scholar 

  30. Chabi, K., Boumali, A.: Rev. Mex. Fis. 66, 110 (2020)

    Article  Google Scholar 

  31. Byers, N., Yang, C.N.: Phys. Rev. Lett. 7, 46 (1961)

    Article  ADS  Google Scholar 

  32. Osobonye, G.T., Adekanmbi, M., Ikot, A.N., Okorie, U.S., Rampho, G.J.: Pramana. J. Phys. 95, 98 (2021)

    Google Scholar 

  33. Ikhdair, S., Sever, R.: The Ochem. J. Mol. Struct. 806, 155 (2007)

    Article  Google Scholar 

  34. Yahya, W.A., Oyewumi, K.J., Sen, K.D.: Int. J. Quant. Chem. 115, 1543 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by King Mongkuts University of Technology North Bangkok, contract no. KMUTNB-FF-66-24.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and equally contributed to the final manuscript.

Corresponding author

Correspondence to P. Sawangtong.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Extended Nikiforov Uvarov Method

Appendix A Extended Nikiforov Uvarov Method

As the name implies, the ENU method is an extension of the standard NU method. This method was developed and proposed by Karayer et al. [23] and her co-workers. The ENU takes the form [23,24,25],

$${\psi}^{{\prime\prime} }(z)+\frac{{\overset{\sim }{\tau}}_e(z)}{\sigma_e(z)}{\psi}^{\prime }(z)+\frac{{\overset{\sim }{\sigma}}_e(z)}{\sigma_e^2(z)}\psi (z)=0$$
(52)

where \({\overset{\sim }{\tau}}_e\) is a polynomial of at most second degree, σe is a polynomial of at most third degree, \({\overset{\sim }{\sigma}}_e\) is a polynomial of at most fourth degree, ψ is the wave function and the subscript (e) denotes the extended in order to distinguish it from the NU whose polynomials are of degree one for \(\overset{\sim }{\tau }\) and two for σ and \(\overset{\sim }{\sigma }\). In order to solve Eq. (52), we used the following ansatz for the wave function,

$$\psi (s)={\phi}_e(s){\chi}_n(s)$$
(53)

The second part of the wave function becomes hypergeometric-type equation of the type

$${\sigma}_e(s){\chi}^{{\prime\prime} }(s)+{\tau}_e(s){\chi}^{\prime }(s)+h(s)\chi (s)=0$$
(54)

where

$${\tau}_e(z)={\overset{\sim }{\tau}}_e(z)+2{\pi}_e(z)$$
(55)
$$h(z)=G(z)+{\pi}_e^{\prime }(z)$$
(56)

and the πe(z) and G(z) polynomials are defined as follows,

$${\pi}_e(z)=\frac{\sigma_e^{\prime }(z)-{\overset{\sim }{\tau}}_e(z)}{2}\pm \sqrt{{\left(\frac{\sigma_e^{\prime }(z)-{\overset{\sim }{\tau}}_e(z)}{2}\right)}^2-{\overset{\sim }{\sigma}}_e(z)+G(z){\sigma}_e(z)}$$
(57)
$$G(z)= Pz+Q$$
(58)

where P and Q are constants that will be determine in Eq. (57) based on the condition that the expression under the square root sign must be square of a polynomial of at most degree two. Eq. (54) has a particular polynomial solution of the form χ(z) = χn(z) then Eq. (55) becomes,

$${\sigma}_e(z){\chi}^{{\prime\prime} }(z)+{\tau}_e(z){\chi}^{\prime }(z)+{h}_n(z)\chi (z)=0$$
(59)

where,

$${h}_n(z)=-\frac{n}{2}{\tau}^{\prime }(z)-\frac{n\left(n-1\right)}{6}{\sigma}^{{\prime\prime} }(z)+{C}_n,$$
(60)

where Cn is an integration constant. The eigenvalue equation for the extended Nikiforov Uvarov takes the form.

$$h(s)={h}_n(s)=-\frac{1}{2}n{\tau}^{\prime }(s)-\frac{n\left(n-1\right)}{6}{\sigma}^{{\prime\prime} }(s)\ \left(n=0,1,2,\dots \right)$$
(61)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikot, A.N., Okorie, U.S., Sawangtong, P. et al. Effects of Topological Defects and AB Fields on the Thermal Properties, Persistent Currents and Energy Spectra with an Exponential-Type Pseudoharmonic Potential. Int J Theor Phys 62, 197 (2023). https://doi.org/10.1007/s10773-023-05453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05453-2

Keywords

Navigation