Skip to main content
Log in

Electronic and Magnetic Properties of Doped Silicon Carbide Nanosheet Under an External Electric Field

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The electronic and magnetic properties of silicon carbide nanosheets were investigated in this study, with particular attention given to the effects of doping with transition metal atoms and applying an external electric field. Our findings point out that introducing dopants, such as Mn, Co, and Zn, can notably reduce the band gap of the pristine structure from 2.6 eV to 0.752 eV, 0.261 eV, and 0.898 eV, respectively. Moreover, the inclusion of Mn and Co dopants results in magnetization. On the other hand, applying a transverse external electric field up to 7 V/nm leads to a semiconductor-to-metal phase transition. Although the applied electric field has a minor effect on the Mn-doped structure’s magnetic moment, it slightly decreases the magnetic moment of the magnetized Co-doped one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a
Fig. 2b
Fig. 2c
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Talla, J.A., Msallam, Z.M.: Influence of induced ripples on optical properties of graphene: density functional theory. Russ. J. Inorg. Chem. 67(S1), S52–S62 (2023)

  2. Talla, J.A., Ahmad, M.S.: Structural and electronic Properties of Rippled Graphene monolayer: Density Functional Theory. J. Electron. Mater. 51(5), 2464–2474 (2022)

    Article  ADS  Google Scholar 

  3. Talla, J.A., Almahmoud, E.A., Al-Khaza’leh, K., Abu-Farsakh, H.: Structural and electronic properties of rippled graphene with different orientations of Stone Wales defects: first-principles study. Semiconductor 55, 796–806 (2021)

    Article  Google Scholar 

  4. Chauhan, D., Ashfaq, M., Talreja, N., Managalraja, R.V.: 2D materials for environment, energy, and biomedical applications. J. Biomed. Res. Environ. Sci. 2(10), 977–984 (2021)

  5. Thulasiraman, A.V., Ganesapillai, M.: A systematic review on the synthesis of silicon carbide: an alternative approach to valorisation of residual municipal solid waste. Processes 11(1) (2023)

  6. Kajale, S.N., Yadav, S., Cai, Y., Joy, B., Sarkar, D.: 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 24(12), 103513 (2021)

  7. Sulleiro, M.V., Dominguez-Alfaro, A., Alegret, N., Silvestri, A., Gómez, I.J.: 2D materials towards sensing technology: From fundamentals to applications. Sens. Bio-Sensing Res. 38 (2022)

  8. Pashanova, K.I., Ershova, I.V., Trofimova, O.Y., Rumyantsev, R.V., Fukin, G.K., Bogomyakov, A.S., Arsenyev, M.V., Piskunov, A.V.: Charge transfer chromophores derived from 3d-row transition metal complexes. Molecules 27, no. 23, Nov 24 (2022)

  9. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T.S., Hsieh, G.W., Jung, S., Bonaccorso, F., Paul, P.J., Chu, D., Ferrari, A.C.: Inkjet-printed graphene electronics. ACS Nano 6(4), 2992–3006 (2012)

  10. Majid, A., Rani, N., Malik, M.F., Ahmad, N., Najam al, H., Hussain, F., Shakoor, A.: A review on transition metal doped silicon carbide. Ceram. Int. 45(7), 8069–8080 (2019)

    Article  Google Scholar 

  11. Chaves, A., Azadani, J.G., Alsalman, H., da Costa, D.R., Frisenda, R., Chaves, A.J., Song, S.H., Kim, Y.D., He, D., Zhou, J., Castellanos-Gomez, A., Peeters, F.M., Liu, Z., Hinkle, C.L., Oh, S.-H., Ye, P.D., Koester, S.J., Lee, Y.H., Avouris, P., Wang, X., Low, T.: Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4(1) (2020)

  12. Talla, J.A., Salem, M.A.: Combined effect of Stone–Wales defects and titanium doping on electronic properties of a silicon carbide monolayer: DFT. J. Comput. Electron. (2022)

  13. Talla, J.A.: Band gap opening of doped graphene stone wales defects: simulation study. Semiconductors 54(1), 40–45 (2020)

  14. Talla, J.A.: Pressure induced phase transition and band gap controlling in defective graphene mono-sheet: Density functional theory. Mater. Res. Express. 6(11), 115012 (2019)

    Article  ADS  Google Scholar 

  15. Talla, J.A.: Electronic properties of silicon carbide nanotube with Stone Wales defects under uniaxial pressure: A computational study. Comput. Condens. Matter. 19, e00378 (2019)

    Article  Google Scholar 

  16. Ghozlan, A.A., Talla, J.A.: Optical properties of defective silicon carbide nanotubes: Theoretical study. Rev. Cubana Fis. 36, 27–36 (2019)

    Google Scholar 

  17. Chabi, S., Guler, Z., Brearley, A.J., Benavidez, A.D., Luk, T.S.: The creation of true two-dimensional silicon carbide. Nanomaterials (Basel) 11(7) (2021)

  18. Zhang, L., Cui, Z.: First-principles study of metal impurities in Silicon Carbide: structural, magnetic, and electronic properties. Front. Mater. 9 (2022)

  19. Khan, A.A., Ahmad, R., Ahmad, I.: Silicon carbide and III-nitrides nanosheets: promising anodes for Mg-ion batteries. Mater. Chem. Phys. 257 (2021)

  20. Chabi, S., Kadel, K.: Two-dimensional silicon carbide: emerging direct band gap semiconductor. Nanomaterials (Basel) 10(11) (2020)

  21. Nguyen, D.-T., Le, M.-Q.: Mechanical properties of various two-dimensional silicon carbide sheets: An atomistic study. Superlattices Microstruct. 98, 102–115 (2016)

    Article  ADS  Google Scholar 

  22. Sun, L., Wang, B., Wang, Y.: A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 5(6) (2018)

  23. Jahanshahi, D., Ostadhassan, M., Vessally, E., Azamat, J.: Performance of silicon carbide nanomaterials in separation process. Sep. Purif. Rev. 1–16 (2022)

  24. Lin, X., Lin, S., Xu, Y., Hakro, A.A., Hasan, T., Zhang, B., Yu, B., Luo, J., Li, E., Chen, H.: Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C 1(11) (2013)

  25. Wang, C., Song, Y., Huang, H.: Evolution application of two-dimensional MoS(2)-based field-effect transistors. Nanomaterials (Basel) 12(18) (2022)

  26. Novoselov, K.S., Mishchenko, A., Carvalho, A., Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016)

  27. Khan, A.A., Ahmad, A., Al-Swaidan, H.M., Haider, S., Akhtar, M.S., Khan, S.U.: Density functional theory study of P-embedded SiC monolayer as a robust metal free catalyst for N2O reduction and CO oxidation. Mol. Catal. 527 (2022)

  28. Huang, L., Liu, H., Deng, X., Cui, W.: The structural, mechanical and electrical properties of 2D SiC with C-related point defects and substitution of C by foreign atoms. Vacuum 208 (2023)

  29. Talla, J.A., Salem, M.A.: Combined effect of Stone–Wales defects and titanium doping on electronic properties of a silicon carbide monolayer: DFT. J. Comput. Electron. 22, 68–79 (2023)

    Google Scholar 

  30. Dyck, O., Zhang, L., Yoon, M., Swett, J.L., Hensley, D., Zhang, C., Rack, P.D., Fowlkes, J.D., Lupini, A.R., Jesse, S.: Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties. Carbon. 173, 205–214 (2021)

    Article  Google Scholar 

  31. Chen, S., Chen, Z., Xu, X., Cao, C., Xia, M., Luo, Y.: Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small 14(12), e1703361 (2018)

  32. Hu, M.-S., Kuo, C.-C., Wu, C.-T., Chen, C.-W., Ang, P.K., Loh, K.P., Chen, K.-H., Chen, L.-C.: The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications. Carbon 49(14), 4911–4919 (2011)

    Article  Google Scholar 

  33. Al-Khaza’leh, K., Talla, J.A., Salem, M.A.: Effect of external electric field on the electronic and magnetic properties of doped silicon carbide nanotubes: DFT. Appl. Phys. A 129(4) (2023)

  34. Nairata, M., Talla, J.: Electronic Properties of aluminum doped carbon nanotubes with Stone Wales defects: density functional theory. Phys. Solid State 61(10), 1896–1903 (2019)

    Article  ADS  Google Scholar 

  35. Almahmoud, E., Talla, J.A.: Band gap tuning in carbon doped boron nitride mono sheet with Stone-Wales defect: A simulation study. Mater. Res. Express. 6(10), 105038 (2019)

    Article  ADS  Google Scholar 

  36. Zhao, Z., Yong, Y., Zhou, Q., Kuang, Y., Li, X.: Gas-sensing properties of the SiC monolayer and bilayer: a density functional theory study. ACS Omega 5(21), 12364–12373 (2020)

  37. Sun, K., Wang, T., Gong, W., Lu, W., He, X., Eddings, E.G., Fan, M.: Synthesis and potential applications of silicon carbide nanomaterials/nanocomposites. Ceram. Int. 48(22), 32571–32587 (2022)

  38. Nejadsattari, F., Stadnik, Z.M.: Spin polarized density functional theory calculations of the electronic structure and magnetism of the 112 type iron pnictide compound [Formula: See text]. Sci. Rep. 11(1), 12113 (2021)

  39. Al-Sharif, A., AlAderah, B., Obeidat, A., Talla, J.: Influence of transition metal defects on electronic and magnetic properties of bulk silicon: ab-initio simulation. Mater. Today Commun. 34 (2023)

  40. Karan, N.S., Sarma, D.D., Kadam, R.M., Pradhan, N.: Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals. J. Phys. Chem. Lett. 1(19), 2863–2866 (2010)

    Article  Google Scholar 

  41. Liu, G., Tuttle, B.R., Dhar, S.: Silicon carbide: a unique platform for metal-oxide-semiconductor physics. Appl. Phys. Rev. 2(2) (2015)

  42. Talla, J.A., Alzrigat, M.S.: Effect of titanium impurity on electronic properties of double-walled nanotubes: theoretical approach. Russ. J. Inorg. Chem. 67(11), 1888–1899 (2022)

    Article  Google Scholar 

  43. Talla, J.A.: Stability and electronic properties of hybrid coaxial carbon nanotubes–boron nitride nanotubes under the influence of electric field, Appl. Phys. A 127(8) (2021)

  44. Shi, Z., Zhang, Z., Kutana, A., Yakobson, B.I.: Predicting two-dimensional silicon carbide monolayers. ACS Nano 9(10), 9802–9809 (2015)

  45. Zhou, B., Zhou, B., Liu, P., Zhou, G.: The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field. Phys. Lett. A. 382(4), 193–198 (2018)

    Article  ADS  Google Scholar 

  46. Brown, S.N.: Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal-ligand pi bonding in potentially noninnocent ligands. Inorg. Chem. 51(3), 1251–1260 (2012)

  47. Sarkar, T., Prakasha, K.R., Bharadwaj, M.D., Prakash, A.S.: Role of transition metals in a charge transfer mechanism and oxygen removal in Li(1.17)ni(0.17)mn(0.5)Co(0.17)O(2): experimental and first-principles analysis. Phys. Chem. Chem. Phys. 20(29), 19606–19613 (2018)

  48. Chhowalla, M., Shin, H.S., Eda, G., Li, L.J., Loh, K.P., Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

  49. Mendez-Galvan, M., Celaya, C.A., Jaramillo-Quintero, O.A., Muniz, J., Diaz, G., Lara-Garcia, H.A.: Tuning the band gap of M-doped titanate nanotubes (M = fe, Co, Ni, and Cu): an experimental and theoretical study. Nanoscale Adv. 3(5), 1382–1391 (2021)

  50. Norton, D.P., Pearton, S.J., Hebard, A.F., Theodoropoulou, N., Boatner, L.A., Wilson, R.G.: Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Appl. Phys. Lett. 82(2), 239–241 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design was contributed by all authors. Material preparation, data collection, and analysis were carried out by MS, JT and AA. The first draft of the manuscript was written by JT and MS, and all authors provided comments on previous versions of the manuscript. The final manuscript was reviewed and approved by all authors.

Corresponding author

Correspondence to Jamal A. Talla.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, M.A., Talla, J.A. & Al-Moumani, A.L. Electronic and Magnetic Properties of Doped Silicon Carbide Nanosheet Under an External Electric Field. Int J Theor Phys 62, 137 (2023). https://doi.org/10.1007/s10773-023-05415-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05415-8

Keywords

Navigation