Skip to main content
Log in

Quantum Key Distribution Scheme with Key Recycling in Integrated Optical Network

  • RESEARCH
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum Key Distribution (QKD) effectively solve the problem that optical network is vulnerable to wireless network attacks by using the principle of quantum mechanics. This paper uses the QKD as a service (QaaS, i.e., multiple users can obtain the required key rate from the same QKD network infrastructure without deploying a dedicated QKD network.) framework to integrate QKD into the optical network, and proposes A QKD-integrated four-layer optical network architecture. Two key virtualization steps, Key Pool (KP) and Virtual Key Pool (VKP), are also introduced at the key distribution layer, which can provide users with better key service while ensuring the security of key distribution. In a general way, the trusted relay schemes used in QKD networks achieve the purpose of extending security by consuming additional keys. However, key relay failures often occur in QKD systems, which greatly waste quantum key resources. Therefore, in this paper, we add the quantum key recycling (QKR) mechanism and introduce the hierarchical mechanism of reusing keys, which improves the use efficiency of keys in optical networks, saves key resources and improves the encryption capability of the system. In addition, the security and efficiency analysis show that our protocol can achieve ideal results under the existing quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Abbreviations

(QLs):

Quantum links

AES :

Advanced encryption standard

DCN:

Data communication node

KaaS :

Key as a service

KP:

Key pool

KS:

Key server

PCh:

Public channel

QCh:

Quantum channel

QCN:

Quantum communication node

QKD:

Quantum Key Distribution

QLP:

QKD secured lightpath

SKR:

Secret key rate

TDCh:

Traditional data channel

TRN:

Trusted repeater node

VKP:

Virtual key pool

References

  1. Bennett C H, Brassard G. Quantum cryptography: public-key distribution and coin tossing[C] Proc of IEEE International Conference on Computers, System and Signal Processing. Piscataway, NJ: IEEE Press, 1984. 175–179

  2. Huawang, Q., Yuewei, D.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state [J]. Inf. Process. Lett. 116(5), 351–355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mishra, S., Shukla, C., Pathak, A., et al.: An integrated hierarchical dynamic quantum secret sharing protocol [J]. Int. J. Theor. Phys. 54(9), 1–12 (2015)

    Article  MATH  Google Scholar 

  4. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 160307 (2015)

    Article  Google Scholar 

  6. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–48 (2017)

    Article  Google Scholar 

  7. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys Rev Lett 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bennett, C.H., Brassard, G., Breidbart, S., Quantum Cryptography, I.I.: How to re-use a one-time pad safely even if P=NP. Natural Computing 13, 453–458 (2014). (Original manuscript 1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Fehr and L. Salvail. Quantum authentication and encryption with key recycling. In Eurocrypt, 2017. https://arxiv.org/abs/1610.05614v1

  11. B. Skori´c and M. de Vries. Quantum Key Recycling with eight-state encoding. (The Quantum One Time Pad is more interesting than we thought). International Journal of Quantum Information, 2017. https://eprint.iacr.org/2016/1122.

  12. Li, X., Zhao, Y., Nag, A., Yu, X., Zhang, J.: Key-Recycling Strategies in Quantum-Key-Distribution Networks. Appl. Sci. 10, 3734 (2020)

    Article  Google Scholar 

  13. Portmann, C.: Key Recycling in Authentication. IEEE T. Inform. Theory 60, 4383–4396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fehr, S.; Salvail, L. Quantum authentication; encryption with key recycling. In Proceedings of the Annual International Conference on the Theory, Applications of Cryptographic Techniques, Paris, France, 30 April–4 May 2017; pp. 311–338

  15. J. Y. Cho, T. Szyrkowiec, and H. Griesser, “Quantum key distribution as a service,” in Proceedings of QCrypt 2017, Cambridge, UK, 2017

  16. Mao, Y., Wang, B.-X., Zhao, C., Wang, G., Wang, R., Wang, H., Zhou, F., Nie, J., Chen, Q., Zhao, Y., Zhang, Q., Zhang, J., Chen, T.-Y., Pan, J.-W.: Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26(5), 6010–6020 (2018)

    Article  ADS  Google Scholar 

  17. Cao, Y., Zhao, Y., Wang, J., Yu, X., Ma, Z., Zhang, J.: SDQaaS: Software defined networking for quantum key distribution as a service. Opt. Express 27(5), 6892–6909 (2019)

    Article  ADS  Google Scholar 

  18. A. Aguado, V. Lopez, J. Martinez-Mateo, M. Peev, D. Lopez, and V. Martin, “GMPLS network control plane enabling quantum encryption in end-to-end services,” in Proceedings of ONDM 2017, Budapest, Hungary, 2017

  19. Cao, Y., Zhao, Y., Yu, X., Wu, Y.: Resource assignment strategy in optical networks integrated with quantum key distribution. J. Opt. Commun. Netw. 9(11), 995–1004 (2017)

    Article  Google Scholar 

  20. Kauffman, L.H., Lomonaco, S.J.: Comparing quantum entanglement and topological entanglement. New. J. Phys. 4(1), 73 (2002)

    Article  ADS  Google Scholar 

  21. C.Wang, Z. Li, and H. Zhu, Flexible for Multiple Equations about GHZ States and a Prototype Case, International Journal of Theoretical Physics, 2021

  22. Portmann, C.: Key recycling in authentication. IEEE Transactions Information Theory 60(7), 4383–4396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Cao, Y Zhao, J Wang, KaaS: Key as a service over quantum key distribution integrated optical networks, IEEE Communications Magazine (Volume: 57, Issue: 5, May 2019)

  24. Aguado, A., et al.: Secure NFV Orchestration over an SDN-Controlled Optical Network with Time-Shared Quantum Key Distribution Resources. J. Lightwave Technol. 35(8), 1357–1362 (2017)

    Article  ADS  Google Scholar 

  25. Cao, Y., Zhao, Y., Yu, X., Wu, Y.: “Resource assignment strategy in optical networks integrated with quantum key distribution”,IEEE/OSA. J. Opt. Commun. Netw. 9(11), 995–1004 (2017)

    Article  Google Scholar 

  26. ON Akande, OC Abikoye, AA Kayode, OT Aro & OR Ogundokun, A Dynamic Round Triple Data Encryption Standard Cryptographic Technique for Data Security, International Conference on Computational Science and Its Applications, ICCSA 2020: Computational Science and Its Applications – ICCSA 2020 pp 487–499

  27. Vuppala, A., Roshan, R.S., Nawaz, S., Ravindra, J.V.R.: An Efficient Optimization and Secured Triple Data Encryption Standard Using Enhanced Key Scheduling Algorithm. Procedia Computer Science 171, 1054–1063 (2020)

    Article  Google Scholar 

  28. Peev, M., et al.: The SECOQC Quantum Key Distribution Network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  29. Y Cao, Y Zhao, J Wang, KaaS: Key as a service over quantum key distribution integrated optical networks, IEEE Communications Magazine (Volume: 57, Issue: 5, May 2019)

  30. Tian-Yu Ye1, Chong-Qiang Ye, Measure-Resend Semi-Quantum Private Comparison Without Entanglement, International Journal of Theoretical Physics 57: 3819–3834 (2018)

  31. Sun, Yuhua; Yan, Lili; Chang, Yan; Zhang, Shibin; Shao, Tingting; Zhang, Yan (2018). Two semi-quantum secure direct communication protocols based on Bell states. Modern Physics Letters A, Vol. 34 (2019) 1950004 (10 pages)

  32. Tsai, C.L., Hwang, T.: Semi-quantum key distribution robust against combined collective noise. International Journal of Theoretical Physics 57, 3410–3418 (2018)

    Article  ADS  MATH  Google Scholar 

  33. Zhou, N.R., Zhu, K.N.: XF Zou, Multi-Party Semi-Quantum Key Distribution Protocol With Four-Particle Cluster States. Ann. Phys. 531(8), 1800520 (2019)

    Article  MathSciNet  Google Scholar 

  34. Li, Jian, Li, Hengji, Wang, Na., Li, Chaoyang, Hou, Yanyan, Chen, Xiubo, Yang, Yuguang: A Quantum Key Distribution Protocol Based on the EPR Pairs and its Simulation. Mobile Networks and Applications 26, 620–628 (2021)

    Article  Google Scholar 

  35. Zhang, J., Itzler, M.A., Zbinden, H., Pan, J.-W.: Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4(5), e286 (2015)

    Article  ADS  Google Scholar 

  36. Y Cao, Y Zhao, Q Wang, J Zhang, et al. The evolution of quantum key distribution networks: On the road to the qinternet, IEEE Communications Surveys & Tutorials, 24 2

  37. Sibson, P., Kennard, J.E., Stanisic, S., Erven, C., O’Brien, J.L., Thompson, M.G.: Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172 (2017)

    Article  ADS  Google Scholar 

  38. P. T.K., R. T., M. D.G., and al, “A photonic integrated quantum secure communication system.” Nature (2021)

  39. Cao, Y., Zhao, Y., Colman-Meixner, C., Yu, X., Zhang, J.: Key on demand (KoD) for software-defined optical networks secured by quantum key distribution (QKD). Opt. Express 25(22), 26453–26467 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China: Research on Precision PCR Instrument Model and Its Application in Genetic Engineering (Grant No. 62172330).

Author information

Authors and Affiliations

Authors

Contributions

Hongfeng Zhu: Creativity and Revised the manuscrip Liuyi Chen: Design and Writing Yuguang Xu: Conception, Prepared Figures and Revised the manuscript All authors reviewed the manuscript

Corresponding author

Correspondence to Hongfeng Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Chen, L. & Zhu, H. Quantum Key Distribution Scheme with Key Recycling in Integrated Optical Network. Int J Theor Phys 62, 103 (2023). https://doi.org/10.1007/s10773-023-05376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05376-y

Keywords

Navigation