Skip to main content
Log in

Stochastic Resonance for an Underdamped Bistable System with Two Kinds of Velocity Time-Delays Subjected to Multiplicative and Additive Noise

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The stochastic resonance (SR) phenomenon for an underdamped bistable system with two kinds of velocity time-delays driven by multiplicative and additive noise is investigated. Applying small time-delay approximation, under detailed balance condition, the stationary probability for the system is obtained. The expression for the transition rates out of the two stable states and that for the output signal-to-noise ratio (SNR) of the system are deduced by virtue of two-state theory. Single-peak phenomenon appears when the SNR changes with the velocity time-delays. Traditional SR occurs on the curves of the SNR versus the strengths of the multiplicative and additive noise. A resonance peak takes place when the SNR varies with the damping coefficient. Moreover, it is found that the effects of the two kinds of time-delays and those of the two noises on the SNR are different. The non-monotonous effect of system parameters on the SNR is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2 a
Fig. 3 a
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the results presented in the paper can be reproduced with the information provided in the manuscript.]

References

  1. Benzi, R., Sutera, A., Vulpiani, A.: J. Phys. A 14, L453 (1981)

    ADS  Google Scholar 

  2. McNamara, B., Wiesenfeld, K., Roy, R.: Phys. Rev. Lett. 60, 2626 (1988)

    ADS  Google Scholar 

  3. Yang, J.W., Chang, B.Y., Zhang, L.: Phys. Scr. 97, 085208 (2022)

    ADS  Google Scholar 

  4. Nagarajan, K., Chen, S.B.: Macromol. Theory Simul. 31, 2100084 (2022)

    Google Scholar 

  5. Guo, F., Zhu, C., Wang, S., et al.: Indian J. Phys. 96, 515 (2022)

    ADS  Google Scholar 

  6. Guo, F., Cheng, X.F., Wang, S.L., et al.: Phys. Scr. 96, 015001 (2021)

    ADS  Google Scholar 

  7. Guo, F., Zhang, Y., Wang, X.Y., et al.: Chin. J. Phys. 65, 108 (2020)

    Google Scholar 

  8. Mao, J., Lin, M., Huang, Y., et al.: Phys. Scr. 97, 045208 (2022)

    ADS  Google Scholar 

  9. Zheng, X., Zhang, Y., Zhao, Z.: Indian J. Phys. 1–12, (2022)

  10. Wu, C., Jiao, Q., Tian, F.: Fluct. Noise Lett. 19, 2050014 (2020)

    ADS  Google Scholar 

  11. Aragie, B., Bekele, M., Pellicane, G.: Pramana-J. Phys. 96, 59 (2022)

    ADS  Google Scholar 

  12. Ou, H.L., Ren, R., Deng, K.: J. Stat. Phys. 188, 10 (2022)

    ADS  Google Scholar 

  13. Tu, Z., Zhong, Y., Yu, T.: EPL 138, 53005 (2022)

    ADS  Google Scholar 

  14. Yan, Z., Juan, L.G., Guirao, G., et al.: Fractal Fract. 6, 191 (2022)

    Google Scholar 

  15. Batra, V.P., Chopra, R.: Phys. A 561, 125148 (2021)

    Google Scholar 

  16. Huang, X., Lin, L., Wang, H.: J. Stat. Phys. 178, 1201 (2020)

    MathSciNet  ADS  Google Scholar 

  17. Yang, S., Deng, M., Ren, R.: Adv. Differ. Equ-Ny. 2020, 81 (2020)

    Google Scholar 

  18. Fa, K.S.: Phys. Scr. 95, 025004 (2020)

    ADS  Google Scholar 

  19. Lin, L., Wang, H.: Nonlinear Dyn. 98, 3 (2019)

    Google Scholar 

  20. He, L., Wu, X., Zhang, G.: Phys. A 545, 123345 (2020)

    MathSciNet  Google Scholar 

  21. Hou, M., Yang, J., Shi, S., et al.: Eur. Phys. J. Plus 135, 747 (2020)

    Google Scholar 

  22. Ghori, M.B., Kang, Y., Chen, Y.: J. Comput. Neuro. 50, 217 (2022)

    Google Scholar 

  23. Yao, Y.: Nonlinear Dyn. 107, 3887 (2022)

    Google Scholar 

  24. Liao, Z., Ma, K., Sarker, M.S., et al.: Results in Physics 42, 105968 (2022)

    Google Scholar 

  25. Shi, Z., Liao, Z., Tabata, H.: Chaos. Solitons & Fractals 161, 112314 (2022)

    Google Scholar 

  26. Liao, Z., Wang, Z., Yamhara, H., et al.: Chaos. Solitons & Fractals 153, 111503 (2021)

    Google Scholar 

  27. Pierangeli, D., Marcucci, G., Brunner, D., et al.: Nanophotonics 9(13), 4109–4116 (2020)

    Google Scholar 

  28. Liao, Z., Ma, K., Sarker, M.S., et al.: Advanced Theory and Simulations 5(3), 2100497 (2022)

    Google Scholar 

  29. Choi, J., Love, D.J., Bidigare, P.: IEEE Trans. Signal Process. 63(5), 1310 (2015)

    MathSciNet  ADS  Google Scholar 

  30. Guo, Z.C., Zhu, L., Wong, S.W.: IET Microwaves. Antennas and Propagation 14(10), 124 (2020)

    Google Scholar 

  31. Hirsch, J.E., Huberman, B.A., Scalapino, D.J.: Phys. Rev. A 25, 519 (1982)

    ADS  Google Scholar 

  32. Tsimring, L.S., Pikovsky, A.: Phys. Rev. Lett. 87, 250602 (2001)

    ADS  Google Scholar 

  33. Huber, D., Tsimring, L.S.: Phys. Rev. Lett. 91, 260601 (2003)

    ADS  Google Scholar 

  34. Piwonski, T., Houlihan, J., Busch, T., et al.: Phys. Rev. Lett. 95, 040601 (2005)

    ADS  Google Scholar 

  35. Craig, E.M., Long, B.R., Parrondo, J.M.R., et al.: Europhys. Lett. 81, 10002 (2007)

    ADS  Google Scholar 

  36. Du, L.C., Mei, D.C.: J. Stat. Mech. 11, 11020 (2008)

    Google Scholar 

  37. Guo, Q., Sun, Z., Xu, W.: Commun Nonlinear. Sci. Numer. Simulat. 72, 318 (2019)

    ADS  Google Scholar 

  38. Sun, X., Xu, J.: Int. J. Non-Linear Mech. 83, 48 (2016)

    ADS  Google Scholar 

  39. Li, Y., Xu, D., Fu, Y., et al.: J. Sound Vib. 333, 2665 (2014)

    ADS  Google Scholar 

  40. Yang, X.L., Sun, Z.K.: Int. J. Non-Linear Mech. 45, 621 (2010)

    ADS  Google Scholar 

  41. Zhang, X., Yue, H.: Indian J. Phys. 96, 2467 (2022)

    ADS  Google Scholar 

  42. Zhang, G., Zhou, L., Zhang, T.: Indian J. Phys. 95, 99 (2021)

    ADS  Google Scholar 

  43. Gui, R., Li, J., Yao, Y., et al.: Chaos Soliton Fract. 148, 111043 (2021)

    Google Scholar 

  44. Zeng, C.H., Zhou, X.F., Zeng, Q.H., et al.: Commun. Theor. Phys. 52, 871 (2009)

    ADS  Google Scholar 

  45. Guo, F., Zhou, Y.R., Zhang, Y.: Chin. Phys. B 19, 070504 (2010)

    ADS  Google Scholar 

  46. Wang, K.K., Zong, D.C., Wang, J., et al.: Fluct. Noise Lett. 20, 2150024 (2021)

    ADS  Google Scholar 

  47. Wang, K.K., Wang, Y.J., Li, S.H., et al.: Chaos Soliton Fract. 104, 400 (2017)

    ADS  Google Scholar 

  48. Yan, Z., Guirao, J.L.G., Saeed, T., et al.: Fractal Fract. 6, 191 (2022)

    Google Scholar 

  49. Tian, Y., He, G., Liu, Z., et al.: Phys. A 563, 125383 (2021)

    Google Scholar 

  50. Tian, Y., He, G., Liu, Z., et al.: Chaos Soliton Fract. 135, 109789 (2020)

    Google Scholar 

  51. Tian, Y., Yu, T., He, G.T., et al.: Phys. A 545, 123731 (2020)

    MathSciNet  Google Scholar 

  52. Wang, Q., Wu, H.: Nonlinear Dyn. 107, 2099 (2022)

    Google Scholar 

  53. Yang, T., Cao, Q.: Mech. Syst. Signal Pr. 103, 216 (2018)

    Google Scholar 

  54. Yu, H., Guo, X., Wang, J., et al.: IEEE Trans. Fuzzy Syst. 28, 39 (2020)

    Google Scholar 

  55. Guillouzic, S., Heux, I.L., Lonhtin, A.: Phys. Rev. E 59, 3970 (1999)

    ADS  Google Scholar 

  56. Guillouzic, S., Heux, I.L., Lonhtin, A.: Phys. Rev. E 61, 4906 (2000)

    ADS  Google Scholar 

  57. Frank, T.D.: Phys. Rev. E 71, 031106 (2005)

    ADS  Google Scholar 

  58. Frank, T.D.: Phys. Rev. E 72, 011112 (2005)

    ADS  Google Scholar 

  59. Novikov, E.A.: Zh. Eksp. Teor. Fiz. 47, 1919 (1964)

    Google Scholar 

  60. Novikov, E.A.: Sov. Phys. JETP 20, 1290 (1965)

    ADS  Google Scholar 

  61. Fox, R.F.: Phys. Rev. A 34, 4525 (1986)

    MathSciNet  ADS  Google Scholar 

  62. Rozenfeld, R., Neiman, A., Schimansky-Geier, L.: Phys. Rev. E 62, R3031 (2000)

    ADS  Google Scholar 

  63. Freund, J., Neiman, A., Schimansky-Geier, L.: Europhys. Lett. 50, 8 (2000)

    ADS  Google Scholar 

  64. McNamara, B., Wiesenfeld, K.: Phys. Rev. A 39, 4854 (1989)

    ADS  Google Scholar 

  65. Nicolis, C.: Tellus 34, 1 (1982)

    MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

Supported by Department of Science and Technology of Sichuan Province under grant (No.2019YFSY0043), by AECC Sichuan Gas Turbine Establishment, by Sichuan Science and Technology Program (No.2020YFG0177, No.2020YFG01770360), and by Key Laboratory on Aero-engine Altitude Simulation Technology.

Author information

Authors and Affiliations

Authors

Contributions

Shiqi Jiang and Qian Qiu completed the numerical simulation and theoretical calculation. Feng Guo wrote the manuscript. The manuscript was revised by Zhanxue Wang, Shihui Yuan, Xiaojiang Shi, Lin Wang, Danni Liu contributed equally to the paper.

Corresponding author

Correspondence to Shiqi Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Q., Wang, Z., Jiang, S. et al. Stochastic Resonance for an Underdamped Bistable System with Two Kinds of Velocity Time-Delays Subjected to Multiplicative and Additive Noise. Int J Theor Phys 62, 62 (2023). https://doi.org/10.1007/s10773-023-05317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-023-05317-9

Keywords

PACS Numbers

Navigation