Skip to main content
Log in

A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is imperative that quantum computing devices perform floating-point arithmetic operations. This paper presents a circuit design for floating-point square root operations designed using classical Babylonian algorithm. The proposed Babylonian square root, is accomplished using Clifford+T operations. This work focuses on realizing the square root circuit by employing the bit Restoring and bit Non-restoring division algorithms as two different approaches. The multiplier of the proposed circuit uses an improved structure of Toom-cook 2.5 multiplier by optimizing the T-gate count of the multiplier. It is determined from the analysis that the proposed square root circuit employing slow-division algorithms results in a T-count reduction of 80.51% and 72.65% over the existing work. The proposed circuit saves a significant number of ancillary qubits, resulting in a qubit cost savings of 61.67 % When compared to the existing work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Algorithm 2
Fig. 4
Fig. 5
Algorithm 3
Algorithm 4
Fig. 6
Algorithm 5
Fig. 7
Algorithm 6

Similar content being viewed by others

Data Availability

The data used for this work are available from the corresponding author upon reasonable request.

References

  1. Bhatt, A.P., Sharma, A.: Quantum cryptography for internet of things security. J. Electron. Sci. Technol. 17, 213–220 (2019)

    Google Scholar 

  2. Hughes, R.J., Alde, D.M., Dyer, P., Luther, G.G., Morgan, G.L., Schauer, M.: Quantum cryptography. Contemp. Phys. 36, 149–163 (1995)

    Article  ADS  Google Scholar 

  3. Nguyen, D.M., Kim, S.: Quantum key distribution protocol based on modified generalization of deutsch-jozsa algorithm in d-level quantum system. Int. J. Theor. Phys. 58, 71–82 (2019)

    Article  Google Scholar 

  4. Bennett, C.H.: Logical reversibility of computation. IBM journal of Research and Development 17, 525–532 (1973)

    Article  MathSciNet  Google Scholar 

  5. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. International Journal of Quantum Information 15, 1730001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cai, Y., Lu, X., Jiang, N.: A survey on quantum image processing. Chin. J. Electron. 27, 718–727 (2018)

    Article  ADS  Google Scholar 

  7. Thapliyal, H., Muñoz-Coreas, E.: Design of quantum computing circuits. IT Professional 21, 22–26 (2019)

    Article  Google Scholar 

  8. Li, H. -S., Fan, P., Xia, H., Peng, H., Long, G.-L.: Efficient quantum arithmetic operation circuits for quantum image processing. Science China Phys. Mechan. Astron. 63, 1–13 (2020)

    Google Scholar 

  9. Monroe, C.: Quantum information processing with atoms and photons. Nature 416, 238–246 (2002)

    Article  ADS  Google Scholar 

  10. Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018)

    Article  ADS  Google Scholar 

  11. Babbush, R., Berry, D.W., Kivlichan, I.D., Wei, A.Y., Love, P.J., Aspuru-Guzik, A.: Exponentially more precise quantum simulation of fermions in second quantization. New J. Phys. 18, 033032 (2016)

    Article  ADS  Google Scholar 

  12. Reiher, M., Wiebe, N., Svore, K.M., Wecker, D., Troyer, M.: Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. 114, 7555–7560 (2017)

    Article  ADS  Google Scholar 

  13. Zamboni, M., Graziano, M., Turvani, P.D.G., Raggi, L.: Arithmetic circuits for quantum computing: a software library (2020)

  14. Sousa, L.: Nonconventional computer arithmetic circuits, systems and applications. IEEE Circuits Syst. Mag. 21, 6–40 (2021)

    Article  Google Scholar 

  15. Bhaskar, M.K., Hadfield, S., Papageorgiou, A., Petras, I.: Quantum algorithms and circuits for scientific computing. arXiv:1511.08253 (2015)

  16. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Belavkin, V.: Quantum filtering and control in example: Unstable qubits. In: AIP Conference Proceedings, vol. 1110, pp 57–62. American Institute of Physics (2009)

  18. Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+ t circuits via matroid partitioning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33, 1476–1489 (2014)

    Article  Google Scholar 

  19. Huang, W.-J., Chien, W.-C., Cho, C.-H., Huang, C.-C., Huang, T.-W., Tan, S.G., Cao, C., Zeng, B., Chang, C. -R.: Phase analysis on the error scaling of entangled qubits in a 53-qubit system. Sci. Rep. 11, 1–9 (2021)

    Google Scholar 

  20. Paler, A., Polian, I., Nemoto, K., Devitt, S.J.: Fault-tolerant, high-level quantum circuits: form, compilation and description. Quantum Science and Technology 2, 025003 (2017)

    Article  ADS  Google Scholar 

  21. Thapliyal, H., Varun, T., Munoz-Coreas, E.: Quantum circuit design of integer division optimizing ancillary qubits and t-count. arXiv:1609.01241 (2016)

  22. Gayathri, S., Kumar, R., Dhanalakshmi, S., Kaushik, B.K., Haghparast, M.: T-count optimized wallace tree integer multiplier for quantum computing, International J. Theoret. Phys. 1–13 (2021a)

  23. Gayathri, S., Kumar, R., Dhanalakshmi, S., Dooly, G., Duraibabu, D.B.: T-count optimized quantum circuit designs for single-precision floating-point division. Electronics 10, 703 (2021b)

    Article  Google Scholar 

  24. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quantum circuits for elliptic curve discrete logarithms. In: International conference on post-quantum cryptography, pp 425–444. Springer (2020)

  25. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. In: Transactions on Computational Science XXVII, pp 10–34. Springer (2016)

  26. Biswal, L., Bhattacharjee, D., Chattopadhyay, A., Rahaman, H.: Techniques for fault-tolerant decomposition of a multicontrolled toffoli gate. Phys. Rev. A 100, 062326 (2019)

    Article  ADS  Google Scholar 

  27. Saeedi, M., Pedram, M.: Linear-depth quantum circuits for n-qubit toffoli gates with no ancilla. Phys. Rev. A 87, 062318 (2013)

    Article  ADS  Google Scholar 

  28. Jones, C.: Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A 87, 022328 (2013)

    Article  ADS  Google Scholar 

  29. Mosca, M., Mukhopadhyay, P.: A polynomial time and space heuristic algorithm for t-count. Quantum Science and Technology 7, 015003 (2021)

    Article  ADS  Google Scholar 

  30. Selinger, P.: Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013)

    Article  ADS  Google Scholar 

  31. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 818–830 (2013)

    Article  Google Scholar 

  32. Gidney, C.: Halving the cost of quantum addition. Quantum 2, 74 (2018)

    Article  Google Scholar 

  33. Muñoz-Coreas, E., Thapliyal, H.: Quantum circuit design of a t-count optimized integer multiplier. IEEE Trans. Comput. 68, 729–739 (2018)

    Article  MathSciNet  Google Scholar 

  34. Thapliyal, H., Munoz-Coreas, E., Varun, T., Humble, T.: Quantum circuit designs of integer division optimizing t-count and t-depth. IEEE Transactions on Emerging Topics in Computing (2019)

  35. Munoz-Coreas, E., Thapliyal, H.: T-count and qubit optimized quantum circuit design of the non-restoring square root algorithm. ACM Journal on Emerging Technologies in Computing Systems (JETC) 14, 1–15 (2018)

    Article  Google Scholar 

  36. Khosropour, A., Aghababa, H., Forouzandeh, B.: Quantum division circuit based on restoring division algorithm. In: 2011 Eighth International Conference on Information Technology: New Generations, pp 1037–1040. IEEE (2011)

  37. Dutta, S., Tavva, Y., Bhattacharjee, D., Chattopadhyay, A.: Efficient quantum circuits for square-root and inverse square-root. In: 2020 33Rd International Conference on VLSI Design and 2020 19Th International Conference on Embedded Systems: VLSID, pp 55–60. IEEE (2020)

  38. Thapliyal, H., Muñoz-Coreas, E., Khalus, V.: Quantum circuit designs of carry lookahead adder optimized for t-count t-depth and qubits. Sustainable Computing: Informatics and Systems 29, 100457 (2021)

    Google Scholar 

  39. Haener, T., keneken, M., Roetteler, M., Svore, K.M.: Quantum circuits for floating-point arithmetic. In: International conference on reversible computation, pp 162–174. Springer (2018)

  40. Dutta, S., Suau, A., Dutta, S., Roy, S., Behera, B.K., Panigrahi, P.K.: Quantum circuit design methodology for multiple linear regression. arXiv:1811.01726 (2018)

  41. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184 (2004)

  42. Kosheleva, O.: Babylonian method of computing the square root: justifications based on fuzzy techniques and on computational complexity. In: NAFIPS 2009-2009 Annual Meeting of the North American Fuzzy Information Processing Society, pp 1–6. IEEE (2009)

  43. Markov, I.L., Saeedi, M.: Constant-optimized quantum circuits for modular multiplication and exponentiation. arXiv:1202.6614 (2012)

  44. Cho, S.-M., Kim, A., Choi, D., Choi, B.-S., Seo, S.-H.: Quantum modular multiplication. IEEE Access 8, 213244–213252 (2020)

    Article  Google Scholar 

  45. Lee, J.-W., K. Lee, E., Kim, J., Lee, S.: Quantum shift register. arXiv:quant-ph/0112107 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Ethics declarations

Conflict of Interests

The authors declare no conflicts of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, G.S., Kumar, R., Haghparast, M. et al. A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard. Int J Theor Phys 61, 234 (2022). https://doi.org/10.1007/s10773-022-05222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05222-7

Keywords

Navigation