Skip to main content
Log in

A Class of Non-Classicality and Non-Gaussianity of Photon Added Three-mode GHZ-type Entangled Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, We investigate three-mode photon-added Greenberger-Horne-Zeilinger (GHZ) entangled coherent states by repeatedly operating the photon-added operator on the GHZ entangled coherent states. The product of two Laguerre polynomials is demonstrated to be connected to the normalizing constant. The influence of the operation on the non-classical and non-Gaussian behavior of the GHZ entangled coherent states is investigated. Sub-Poissonian statistics, such as Mandel’s parameter and the negativity of the Wigner function, show that non-classical properties can enhance GHZ entangled coherent states. Finally, the occurrence of the anti-bunching phenomena in this class of tripartite excited states is studied using the second-order correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hu, L.-y, et al.: Photon-subtracted squeezed thermal state: Nonclassicality and decoherence. Phys. Rev. A 82.4, 043842 (2010)

    Article  Google Scholar 

  2. Zhang, H.-L., et al.: Nonclassicality and decoherence of photon-subtraction squeezing-enhanced thermal state. International Journal of Theoretical Physics 51.10, 3330–3343 (2012)

    Article  MATH  Google Scholar 

  3. Karimi, A., Tavassoly, M.K.: Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties. Chinese Phys. B 25.4, 040303 (2016)

    Article  Google Scholar 

  4. Hu, L.-Y., et al.: Optimal fidelity of teleportation with continuous variables using three tunable parameters in a realistic environment. Phys. Rev. A 93.3, 033807 (2016)

    Article  Google Scholar 

  5. Braunstein, S.L., Pati, A.K.: Quantum Computation with continuous variables (2003)

  6. Marek, P., Jeong, H., Kim, M.S.: Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78.6, 063811 (2008)

    Article  Google Scholar 

  7. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43.1, 492 (1991)

    Article  Google Scholar 

  8. Zavatta, A., Viciani, S., Bellini, M.: Single-photon excitation of a coherent state: Catching the elementary step of stimulated light emission. Phys. Rev. A 72.2, 023820 (2005)

    Article  Google Scholar 

  9. Kitagawa, A., et al.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73.4, 042310 (2006)

    Article  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: Cambridge Univ Press (2000)

  11. DiVincenzo, D.P.: Quantum computation. Science 270.5234, 255–261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70.13, 1895 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79.23, 4709 (1997)

    Article  Google Scholar 

  14. Braunstein, S.L., Jeff Kimble, H.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80.4, 869 (1998)

    Article  Google Scholar 

  15. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69.20, 2881 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Braunstein, S.L., Jeff Kimble, H.: Dense coding for continuous variables. Phys. Rev A 61, 042302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ekert, A.K.: Quantum Cryptography and Bell’s Theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Bell, J.S.: Physics 1, 195–200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195

    Article  Google Scholar 

  19. Clauser, J.F., et al.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23.15, 880 (1969)

    Article  MATH  Google Scholar 

  20. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10.2, 526 (1974)

    Article  Google Scholar 

  21. Jeong, H., Lee, J., Kim, M.S.: Dynamics of nonlocality for a two-mode squeezed state in a thermal environment. Phys. Rev. A 61.5, 052101 (2000)

    Article  Google Scholar 

  22. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bells theorem Bell’s Theorem, Quantum Theory and Conceptions of the Universe ed M Kafatos. Dordrecht: Kluwer 69, 69–72 (1989)

    Google Scholar 

  23. Dür, W., Vidal, G., Ignacio Cirac, J.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62.6, 062314 (2000)

    Article  MathSciNet  Google Scholar 

  24. Gerry, C.C., Grobe, R.: Nonlocal entanglement of coherent states, complementarity, and quantum erasure. Phys. Rev. A 75.3, 034303 (2007)

    Article  MathSciNet  Google Scholar 

  25. Jeong, H., An, N.B.: Greenberger-Horne-Zeilingertype and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74.2, 022104 (2006)

    Article  Google Scholar 

  26. An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69.2, 022315 (2004)

    Article  Google Scholar 

  27. Song, K.-H., Zhang, W.-J., Guo, G.-C.: Proposal for preparing entangled coherent states using atom-cavity-mode Raman interaction. The European Physical Journal D-Atomic Molecular, Optical and Plasma Physics 19.2, 267–269 (2002)

    ADS  Google Scholar 

  28. Yuan, C.-H., Yong-Cheng, O., Zhang, Z.-M.: A scheme for preparation of W-type entangled coherent state of three-cavity fields. Chinese Phys. Lett. 23.7, 1695–1697 (2006)

    ADS  Google Scholar 

  29. Xu, L., Kuang, L.-M.: Single-mode excited entangled coherent states. Journal of Physics A: Mathematical and General 39.12, L191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dong-Lin, Z., Le-Man, K.: Two-mode excited entangled coherent states and their entanglement properties. Chinese Phys. B 18.4, 1328 (2009)

    Article  ADS  Google Scholar 

  31. Li, Y., Jing, H., Zhan, M.-S.: Optical generation of a hybrid entangled state via an entangling single-photon-added coherent state. Journal of Physics B Atomic, Molecular and Optical Physics 39.9, 2107 (2006)

    Article  ADS  Google Scholar 

  32. Zhen-Zhong, R., Rui, J., Xian-Zhou, Z.: Optical generation of single-or two-mode excited entangled coherent states. Chin. Phys. Lett. 25.10, 3562 (2008)

    Article  Google Scholar 

  33. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306.5696, 660–662 (2004)

    Article  Google Scholar 

  34. Safaeian, O., Tavassoly, M.K.: Deformed photon-added nonlinear coherent states and their non-classical properties. J. Phys. A Math. Theor. 44.22, 225301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mojaveri, B., Dehghani, A., Jafarzadeh Bahrbeig, R.: Enhancing entanglement of entangled coherent states via a f-deformed photon-addition operation. The European Physical Journal Plus 134.9, 1–8 (2019). B. Mojaveri, A. Dehghani, and R. Jafarzadeh Bahrbeig. The European Physical Journal Plus 134.9: 1-8 (2019)

    MATH  Google Scholar 

  36. Mojaveri, B., Dehghani, A., Mahmoodi, S.: New class of generalized photon-added coherent states and some of their non-classical properties. Phys. Scr. 89.8, 085202 (2014)

    Article  Google Scholar 

  37. Zhang, Z., Fan, H.: Properties of states generated by excitations on a squeezed vacuum state. Phys. Lett. A 165.1, 14–18 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  38. Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82.5, 053812 (2010)

    Article  Google Scholar 

  39. Nelson, J.G., Haight, J., Lee, C.T.: Nonclassical effects in the photon-added thermal state. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9.3, 411 (1997)

    ADS  Google Scholar 

  40. Li-Yun, H., Hong-Yi, F.: Two-Variable Hermite polynomial excitation of Two-Mode squeezed vacuum state as squeezed Two-Mode number state. Commun. Theor. Phys. 50.4, 965 (2008)

    Article  MATH  ADS  Google Scholar 

  41. Nath, R., Muthu, S.K.: Phase properties of excited coherent states. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8.4, 915 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. Yuan, H.-C., Li, H.-M., Fan, H.-Y.: Photon-added Bell-type entangled coherent state and some nonclassical properties. Canadian J. Phys. 87.12, 1233–1245 (2009)

    Article  Google Scholar 

  43. Liang, M.-L., Zhang, J.-N., Yuan, B.: Modified photon-added coherent states: Generation and relatedentangled states. Canadian J. Phys. 86.12, 1387–1392 (2008)

    Article  Google Scholar 

  44. Li, H.-M., Yuan, H.-C., Fan, H.-Y.: Single-mode excited GHZ-type entangled coherent state. International Journal of Theoretical Physics 48.10, 2849–2864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li-Yun, H., Hong-Yi, F.: Wigner function of the thermo number states. Chinese Phys. B 18.3, 902 (2009)

    Article  ADS  Google Scholar 

  46. Zhang, H.-L., et al.: Two-mode excited entangled coherent state: nonclassicality and entanglement. International Journal of Theoretical Physics 56.3, 652–666 (2017)

    Article  MATH  ADS  Google Scholar 

  47. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131.6, 2766–2788 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10.7, 277–279 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Husimi, K.: Some formal properties of the density matrix. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22.4, 264–314 (1940)

    MATH  Google Scholar 

  50. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  MATH  ADS  Google Scholar 

  51. Duc, T.M., Noh, J.: Higher-order properties of photon-added coherent states. Opt. Commun. 281.10, 2842–2848 (2008)

    Article  Google Scholar 

  52. Allevi, A., Olivares, S., Bondani, M.: Measuring high-order photon-number correlations in multimode pulsed quantum states. arXiv:1109.0410(2011)

  53. Glauber, R.J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  54. Loudon, R.: The Quantum Theory of Light. Clarendon Press, Oxford (1983)

    MATH  Google Scholar 

  55. Penna, V., Raffa, F.A.: Off-resonance regimes in nonlinear quantum Rabi models. Phys. Rev. A 93, 043814 (2016)

    Article  ADS  Google Scholar 

  56. Mujahid, A., et al.: Temporal and spectral hybrid bound state in continuum and its reliance on the correlation. Physical Chemistry Chemical Physics 24.20, 12457–12464 (2022)

    Article  Google Scholar 

  57. Khan, G.A., et al.: Correlation and squeezing for optical transistor and intensity for router applications in Pr 3+: YSO. Physical Chemistry Chemical Physics 19.23, 15059–15066 (2017)

    Article  Google Scholar 

  58. Abdisa, G., et al.: Controllable hybrid shape of correlation and squeezing. Phys. Rev. A 94,2, 023849 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larbi Jebli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebli, L., Houça, R. & Daoud, M. A Class of Non-Classicality and Non-Gaussianity of Photon Added Three-mode GHZ-type Entangled Coherent States. Int J Theor Phys 61, 231 (2022). https://doi.org/10.1007/s10773-022-05221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05221-8

Keywords

Navigation