Skip to main content
Log in

Protecting Quantum Coherence and Quantum Fisher Information in Ohmic Reservoir

  • Original research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum coherence(QC) and quantum Fisher information(QFI) are investigated for the atom in Jaynes-Cummings model coupling with the Ohmic reservoir at zero temperature when the total excitation number N = 1. We discuss in detail the influence of the atom-cavity coupling and the reservoir parameters on QC and QFI. The results show that QC and QFI of the atom can be effectively controlled by the atom-cavity coupling and the reservoir parameters. Namely, the larger atom-cavity coupling and the appropriate reservoir parameters can effectively protect QC and QFI. Moreover, QC can improve QFI. Last, we provide a physical explanation using the decoherence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    ADS  Google Scholar 

  2. Demkowicz-Dobrzanski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    ADS  Google Scholar 

  3. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: A computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    ADS  Google Scholar 

  4. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    ADS  MathSciNet  Google Scholar 

  5. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Scully, M.O.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855 (1991)

    ADS  Google Scholar 

  7. Albrecht, A.: Some remarks on quantum coherence. J. Mod. Opt. 41, 2467 (1994)

    ADS  Google Scholar 

  8. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1995)

    MATH  Google Scholar 

  9. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    ADS  Google Scholar 

  11. Yadin, B., Bogaert, P., Susa, C.E., Girolami, D.: Coherence and quantum correlations measure sensitivity to dephasing channels. Phys. Rev. A 99, 012329 (2019)

    ADS  Google Scholar 

  12. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    ADS  Google Scholar 

  13. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2016)

    ADS  Google Scholar 

  14. Levi, E.K., Irish, E.K., Lovett, B.W.: Coherent exciton dynamics in a dissipative environment maintained by an off-resonant vibrational mode. Phys. Rev. A 93, 042109 (2016)

    ADS  Google Scholar 

  15. Torun, G., Lami, L., Adesso, G., Yildiz, A.: Optimal distillation of quantum coherence with reduced waste of resources. Phys. Rev. A 99, 012321 (2019)

    ADS  Google Scholar 

  16. Zhao, M.J., Ma, T., Quan, Q., Fan, H., Pereira, R.: 1-norm coherence of assistance. Phys. Rev. A 100, 012315 (2019)

    ADS  MathSciNet  Google Scholar 

  17. Fisher, R.A.: Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22, 900 (1925)

    Google Scholar 

  18. Paris, M.G.A., Rehacek, J.: Quantum State Estimation. Springer, New York (2004)

    MATH  Google Scholar 

  19. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  20. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Google Scholar 

  21. Zwierz, M., Pérez-Delgado, C.A., Kok, P.: General optimality of the heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010)

    ADS  Google Scholar 

  22. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    ADS  Google Scholar 

  23. Humphreys, P.C., Barbieri, M., Datta, A., Walmsley, I.A.: Quantum enhanced multiple phase estimation. Phys. Rev. Lett. 111, 070403 (2013)

    ADS  Google Scholar 

  24. Nusran, N.M., Dutt, M.V.G.: Optimizing phase-estimation algorithms for diamond spin magnetometry. Phys. Rev. B 90, 024422 (2014)

    ADS  Google Scholar 

  25. Pezzè, L., Ciampini, M.A., Spagnolo, N., Humphreys, P.C., Datta, A., Walmsley, I.A., Barbieri, M., Sciarrino, F., Smerzi, A.: Optimal measurements for simultaneous quantum estimation of multiple phases. Phys. Rev. Lett. 119, 130504 (2017)

    ADS  Google Scholar 

  26. Zhang, Y.L., Wang, H., Jing, L., Mu, L.Z., Fan, H.: Fitting magnetic field gradient with Heisenberg-scaling accuracy. Sci. Rep. 4, 7390 (2014)

    Google Scholar 

  27. Nair, R., Tsang, M.: Far-Field Superresolution of thermal electromagnetic sources at the quantum limit. Phys. Rev. Lett. 117, 190801 (2016)

    ADS  Google Scholar 

  28. Benatti, F., Floreanini, R., Marzolino, U.: Squeezing inequalities and entanglement for identical particles. J. Phys. B 44, 091001 (2011)

    ADS  Google Scholar 

  29. Safranek, D., Fuentes, I.: Optimal probe states for the estimation of Gaussian unitary channels. Phys. Rev. A 94, 062313 (2016)

    ADS  Google Scholar 

  30. Monras, A., Illuminati, F.: Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels. Phys. Rev. A 83, 012315 (2011)

    ADS  Google Scholar 

  31. Correa, L.A., Mehboudi, M., Adesso, G., Sanpera, A.: Individual quantum probes for optimal thermometry. Phys. Rev. Lett. 114, 220405 (2015)

    ADS  Google Scholar 

  32. Hofer, P.P., Brask, J.B., Perarnau-Llobet, M., Brunner, N.: Quantum thermal machine as a thermometer. Phys. Rev. Lett. 119, 090603 (2017)

    ADS  Google Scholar 

  33. Kish, S.P., Ralph, T.C.: Quantum-limited measurement of space-time curvature with scaling beyond the conventional Heisenberg limit. Phys. Rev. A 96, 041801 (2017)

    ADS  MathSciNet  Google Scholar 

  34. Fink, M., Rodriguez-Aramendia, A., Handsteiner, J., Ziarkash, A., Steinlechner, F., Scheidl, T., Fuentes, I., Pienaar, J., Ralph, T.C., Ursin, R.: Experimental test of photonic entanglement in accelerated reference frames. Nat. Commun. 8, 15304 (2017)

    ADS  Google Scholar 

  35. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    ADS  Google Scholar 

  36. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in Non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    ADS  Google Scholar 

  37. Hu, Y.H., Yang, H.F., Tan, Y.G., Tao, Y.P.: Estimation of the parameters in a Two-State system coupled to a squeezed bath. Int. J. Theor. Phys. 57(4), 1148–1157 (2018)

    MATH  Google Scholar 

  38. Tan, Q.S., Yuan, J.B., Jin, G.R., Kuang, L.M.: Near-heisenberg-limited parameter estimation precision by a dipolar-Bose-gas reservoir engineering. Phys. Rev. A 96, 063614 (2017)

    ADS  Google Scholar 

  39. Ren, Y.K., Wang, X.L., Zeng, H.S.: Protection of quantum Fisher information for multiple phases in open quantum systems. Quantum Inf. Process. 17, 5 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Liao, X.P., Fang, M.F., Zhou, X.: Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels. Quantum Inf. Process. 16, 241 (2017)

    ADS  MATH  Google Scholar 

  41. Liu, Y., Zou, H.M., Fang, M.F.: Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement. Chin. Phys. B 27, 010304 (2018)

    ADS  Google Scholar 

  42. Feng, X.N., Wei, L.F.: Quantifying quantum coherence with quantum Fisher information. Sci. Rep. 7, 15492 (2017)

    ADS  Google Scholar 

  43. Wang, Z., Wu, W., Cui, G., Wang, J.: Coherence enhanced quantum metrology in a nonequilibrium optical molecule. New J. Phys. 20, 033034 (2018)

    ADS  Google Scholar 

  44. Lin, D.P., Zou, H.M., Yang, J.H.: Based-nonequilibrium-environment nonMarkovianity, quantum Fisher information and quantum coherence. Phys. Scr. 95, 015103 (2020)

    ADS  Google Scholar 

  45. Yang, J.H., Lin, D.P., Liu, R.F., Zou, H.M.: Quantum Fisher information and coherence of an atom in a dissipative cavity. Laser Phys. 30, 045202 (2020)

    ADS  Google Scholar 

  46. Guo, Y.N., Zeng, K., Chen, P.X.: Teleportation of quantum Fisher information under decoherence channels with memory. Laser Phys. 16, 095203 (2019)

    ADS  Google Scholar 

  47. Guo, Y.N., Peng, H.P., Yang, C., Xie, Q., Zeng, K.: Davies theory for teleportation of quantum Fisher information under decoherence. Laser Phys. 16, 125202 (2019)

    ADS  Google Scholar 

  48. Guo, Y.N., Tian, Q.L., Zeng, K.: Li, Zh.D.: Quantum coherence of twoqubit over quantum channels with memory. Quantum Inf Process. 16, 310 (2017)

    ADS  Google Scholar 

  49. Liao, X.P., Zhou, X., Fang, M.F.: Improving qubit phase estimation in amplitude-damping channel by partial-collapse measurement. Int. J. Theor. Phys. 57, 3 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Liao, X.P., Fang, M.F., Zhou, X.: Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels. Quantum Inf Process. 16, 241 (2017)

    ADS  MATH  Google Scholar 

  51. Zhang, Y.L., Fang, M.F., Kang, G.D., Zhou, Q.P.: Reducing quantummemory-assisted entropic uncertainty by weak measurement and weak measurement reversal. Int. J. Quantum Inf. 13, 1550037 (2015)

    MATH  Google Scholar 

  52. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 51, 89 (1963)

    Google Scholar 

  53. Shore, B.W., Knight, P.L.: The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Scala, M., Militello, B., Messina, A., Piilo, J., Maniscalco, S.: Microscopic derivation of the Jaynes-Cummings model with cavity losses. Phys. Rev. A 75, 013811 (2007)

    ADS  MATH  Google Scholar 

  55. Zou, H.M., Fang, M.F.: Analytical solution and entanglement swapping of a double Jaynes–Cummings model in non-Markovian environments. Quantum Inf. Process. 14, 2673–2686 (2015)

    ADS  MATH  Google Scholar 

  56. Zou, H.M., Liu, R.F., Long, D., Yang, J.H., Lin, D.P.: Based-ohmicreservoir non-Markovianity and quantum speed limit time. Phys. Scr. 95, 085105 (2020)

    ADS  Google Scholar 

  57. Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)

    ADS  Google Scholar 

  58. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987)

    ADS  Google Scholar 

  59. Eckel, J., Reina, J.H., Thorwart, M.: Coherent control of an effective two-level system in a non-Markovian biomolecular environment. New J. Phys. 11, 085001 (2009)

    ADS  Google Scholar 

  60. Cui, W., Xi, Z.R., Pan, Y.: Non-markovian entanglement dynamics between two coupled qubits in the same environment. J. Phys. A:, Math. Theor. 42, 155303 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Zou, H.M., Fang, M.F., Yang, B.Y., Guo, Y.N., He, W., Zhang, S.Y.: The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 89, 115101 (2014)

    ADS  Google Scholar 

  62. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. University Press, Oxford (2002)

    MATH  Google Scholar 

  63. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2004)

    Google Scholar 

  64. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    ADS  Google Scholar 

  65. Liu, C.L., Guo, Y.Q., Tong, D.M.: Enhancing coherence of a state by stochastic strictly incoherent operations. Rev. A 96, 062325 (2017)

    Google Scholar 

  66. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  67. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states Samuel L. Phys. Rev. Lett. 72, 3439 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Berrada, K.: Non-markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)

    ADS  Google Scholar 

  69. Song, H., Luo, S., Hong, Y.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91, 042110 (2015)

    ADS  Google Scholar 

  70. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    ADS  Google Scholar 

  71. Zhong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    ADS  Google Scholar 

  72. Dittmann, J.: Explicit formulae for the Bures metric. J. Phys. A Math. Gen. 32, 2663 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No 11374096) and the Doctoral Science Foundation of Hunan Normal University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Mei Zou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiao-Zhi Liu and Dan Long contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XZ., Long, D., Zou, HM. et al. Protecting Quantum Coherence and Quantum Fisher Information in Ohmic Reservoir. Int J Theor Phys 59, 3600–3612 (2020). https://doi.org/10.1007/s10773-020-04620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04620-z

Keywords

Navigation