Skip to main content
Log in

Entropy Variation of a Charged (2 + 1)-Dimensional BTZ Black Hole Under Hawking Radiation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the definition of a black hole’s volume introduced by Christodoulou and Rovelli, we calculate the interior volume of a (2 + 1)-dimensional charged Banados Teitelboim Zanelli (BTZ) black hole, and find that the volume increases linearly with time. Afterwards, the entropy of a massless scalar field inside the black hole is calculated and the result indicates that the entropy will be also increasing with time infinitely. Moreover, thinking about Hawking radiation, the ratio of variation of the scalar field’s entropy to the variation of Bekenstein–Hawking entropy is approximately a linear function of m, which is quite different from a RN black hole while m is relatively large. In the end, we extend the calculation above to a massive BTZ black hole and find that the relationship with different \(\tilde {M}\) between two kinds of entropy is similar to the previous result. But the difference is that the relationship function \(F(m,q,\tilde {M})\) will tend to be a constant when the mass parameter \(\tilde {M}\) becomes big enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Christodoulou, M., Rovelli, C.: Phys. Rev. D 91 (6), 064046 (2015). https://doi.org/10.1103/PhysRevD.91.064046. arXiv:1411.2854[gr-qc]

    Article  ADS  Google Scholar 

  2. Bhaumik, N., Majhi, B.R.: Int. J. Mod. Phys. A 33 (02), 1850011 (2018). https://doi.org/10.1142/S0217751X18500112. arXiv:1607.03704[gr-qc]

    Article  ADS  Google Scholar 

  3. Bengtsson, I., Jakobsson, E.: Mod. Phys. Lett. A 30(21), 1550103 (2015). https://doi.org/10.1142/S0217732315501035. arXiv:1502.01907[gr-qc]

    Article  ADS  Google Scholar 

  4. Wang, X.Y., Liu, W.B.: Phys. Lett. B 788, 464 (2019). https://doi.org/10.1016/j.physletb.2018.11.056

    Article  ADS  Google Scholar 

  5. Wang, X.Y., Jiang, J., Liu, W.B.: Class. Quant. Grav. 35(21), 215002 (2018). https://doi.org/10.1088/1361-6382/aae276. arXiv:1803.09649[gr-qc]

    Article  ADS  Google Scholar 

  6. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992). https://doi.org/10.1103/PhysRevLett.69.1849. arXiv:hep-th/9204099

    Article  ADS  MathSciNet  Google Scholar 

  7. Banados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 48, 1506 (1993). Erratum: [Phys. Rev. D 88 (2013) 069902] https://doi.org/10.1103/PhysRevD.48.1506, https://doi.org/10.1103/PhysRevD.88.069902. arXiv:gr-qc/9302012

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, M.: Phys. Lett. B 790, 205 (2019). https://doi.org/10.1016/j.physletb.2019.01.032. arXiv:1901.04128[gr-qc]

    Article  ADS  Google Scholar 

  9. Zhang, B.: Phys. Rev. D 92, 081501 (2015). https://doi.org/10.1103/PhysRevD.92.081501. arXiv:1510.002182[gr-qc]

    Article  ADS  Google Scholar 

  10. Wang, X.Y., Liu, W.B.: Nucl. Phys. B 943, 114614 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114614

    Article  Google Scholar 

  11. Han, S.Z., Yang, J.Z., Wang, X.Y., Liu, W.B.: Int. J. Theor. Phys. 57 (11), 3429 (2018). https://doi.org/10.1007/s10773-018-3856-6

    Article  Google Scholar 

  12. Majhi, B.R., Samanta, S.: Phys. Lett. B 770, 314 (2017). https://doi.org/10.1016/j.physletb.2017.05.003. arXiv:1703.00142[gr-qc]

    Article  ADS  Google Scholar 

  13. Zhang, B.: Phys. Lett. B 773, 644 (2017). https://doi.org/10.1016/j.physletb.2017.09.035. arXiv:1709.07275[gr-qc]

    Article  ADS  Google Scholar 

  14. Yang, J.Z., Liu, W.B.: Phys. Lett. B 782, 372 (2018). https://doi.org/10.1016/j.physletb.2018.05.050

    Article  ADS  MathSciNet  Google Scholar 

  15. Ali, S., Wang, X.Y., Liu, W.B.: Int. J. Mod. Phys. A 33(27), 1850159 (2018). https://doi.org/10.1142/S0217751X18501592

    Article  ADS  Google Scholar 

  16. Cadoni, M., Setare, M.R.: JHEP 0807, 131 (2008). https://doi.org/10.1088/1126-6708/2008/07/131. arXiv:0806.2754[hep-th]

    Article  ADS  Google Scholar 

  17. Martinez, C., Teitelboim, C., Zanelli, J.: Phys. Rev. D 61, 104013 (2000). https://doi.org/10.1103/PhysRevD.61.104013. arXiv:hep-th/9912259

    Article  ADS  MathSciNet  Google Scholar 

  18. Hendi, S.H., Eslam Panah, B., Panahiyan, S.: JHEP 1605, 029 (2016). https://doi.org/10.1007/JHEP05(2016)029. arXiv:1604.00370[hep-th]

    Article  ADS  Google Scholar 

  19. Hiscock, W.A., Weems, L.D.: Phys. Rev. D 41, 1142 (1990). https://doi.org/10.1103/PhysRevD.41.1142

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11235003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shad Ali.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Lambert W Function

Appendix: Lambert W Function

Lambert W Function represented by W(x), which is also called product log function, is the inverse funtion of f(w) = wew, in which w can be any complex number. Lambert W Function is a multivalued function, and has infinite branches which are usually represented by Wk(x)(k = 0, ±1, ± 2, ± 3, ⋯ ), where Wk(x) denotes the k th branch. Every branch is a single value function. When x is a real number, there are only two branches, W0(x) and W− 1(x), which have been ploted in Fig. 3. We can find that the domain of them respectively are \([-\frac {1}{e},+\infty )\) and \([-\frac {1}{e},0)\). According to (4), \(-\frac {1}{q^{2}} e^{-\frac {m}{q^{2}}}\) is a negetive real number. So for given m and q, there are only two values of W(x), among which the smaller one corresponds to r+ and the bigger one corresponds to r. Obviously, only when

$$ -\frac{e^{-\frac{m}{q^{2}}}}{q^{2}}=-\frac{1}{e} \Rightarrow m=q^{2} (1-2 \ln{q}), $$
(30)

we have r = r+, which is the sign of the extreme BTZ black hole [17]. Besides, (30) can also be verifed by TH = 0.

Fig. 3
figure 3

The blue solid line is the curve of W0(x), and the red dash line is the curve of W− 1(x). We can find that they intersect at \(\left (-\frac {1}{e},-1\right )\)

Now we want to talk about the behavior of r± when q = 0. Setting \(x=-\frac {m}{q^{2}}\), (4) turns to

$$ r_{\pm}=\sqrt{\frac{m}{x}W_{k}\left( \frac{x}{m}e^{x}\right)}\quad (k=-1,0). $$
(31)

Unfortunately, q = 0 is a singularity. So let \(q\rightarrow 0\), i.e. \(x\rightarrow -\infty \), we have

$$ \lim_{x\rightarrow -\infty}r_{+}=\sqrt{m}, \lim_{x\rightarrow -\infty}r_{-}=0, $$
(32)

which is just the result obtained in Ref. [8] for the case of a bare BTZ black hole with q = 0, J = 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Wen, P. & Liu, WB. Entropy Variation of a Charged (2 + 1)-Dimensional BTZ Black Hole Under Hawking Radiation. Int J Theor Phys 59, 1206–1213 (2020). https://doi.org/10.1007/s10773-020-04400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04400-9

Keywords

Navigation