Skip to main content
Log in

Secure Multi-Party Quantum Private Information Query

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Different from the existing quantum key distribution (QKD)-based quantum private query (QPQ) protocols, we propose a secure multi-party quantum private information query protocol utilizing universal blind quantum computation in quantum cloud computing. Due to the blindness and correctness of blind quantum computation, our protocol guarantees the privacy and security for all the clients and the servers. The clients obtain values corresponding to their queries only, and nothing else from the servers, while the servers can not get any information about the queries. In our protocols, the only thing that the clients do is to need the ability to perform single-qubit measurement or to prepare single-qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.. In: IEEE International Conference on Computers, Systems and Signal Processing, vol. 1984, p 175. IEEE, New York (1984)

  2. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. 83, 022301 (2011)

    Article  Google Scholar 

  4. Rao, M.P., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. 87(1), 012331 (2013)

    Article  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. 68(4), 042317 (2003)

    Article  Google Scholar 

  7. Sun, Z., Yu, J., Wang, P., Xu, L.: Symmetrically private information retrieval based on blind quantum computing. Phys. Rev. 91(5), 052303 (2015)

    Article  ADS  Google Scholar 

  8. Gao, F., Qin, S., Huang, W., Wen, Q: Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 62 (7), 70301 (2019)

    Article  ADS  Google Scholar 

  9. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express. 20(16), 17411–17420 (2012)

    Article  ADS  Google Scholar 

  10. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Selected Topics Quantum Electron. 21(3), 98–108 (2014)

    Article  ADS  Google Scholar 

  11. Liu, B., Gao, F., Huang, W., Wen, Q.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  12. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  Google Scholar 

  14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: Security analysis. IEEE Trans. Inf. Theory 56(7), 3465–3477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, Y.G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inform. Process. 13(3), 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chang, Y., Zhang, S., Han, G., Sheng, Z., Yan, L., Xiong, J.: Quantum private query protocol based on two non-orthogonal states. Entropy 18(5), 163 (2016)

    Article  ADS  Google Scholar 

  17. Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. 88(2), 022334 (2013)

    Article  Google Scholar 

  18. Yang, Y.G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process 15(9), 3833–3840 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Li, J., Yang, Y.G., Chen, X.B., Zhou, Y.H., Shi, W.M.: Practical quantum private database queries based on passive round-robin differential phase-shift quantum key distribution. Sci. Rep. 6, 31738 (2016)

    Article  ADS  Google Scholar 

  20. Wang, T.Y., Wang, S.Y., Ma, J.F.: Robust quantum private queries. Int. J. Theor. Phys. 55(7), 3309–3317 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys. Rev. A 95(4), 042344 (2017)

    Article  ADS  Google Scholar 

  22. Childs, A.M.: Secure assisted quantum computation. Quantum Inform. Comput. 5, 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Fitzsimons, Joseph F: Private quantum computation: An introduction to blind quantum computing and related protocols. Npj Quantum Inform. 3(1), 1–11 (2017)

    Article  Google Scholar 

  24. Tan, X.Q., Zhang, X.Q., Song, T.: Verifiable delegated quantum computation with -type entangled states. Comput. Standards Interfaces 54(P1), 36–40 (2017)

    Article  Google Scholar 

  25. Zhang, X.Q., Weng, J., Tan, X.Q., Song, T.T., Luo, W.Q.: Measurement-based universal blind quantum computation with minor resources. Quantum Physics. arXiv:1801.03090 (2018)

  26. Zhang, X.Q., Weng, J., Li, X., Luo, W.Q., Tan, X.Q., Song, T.T.: Single-server blind quantum computation with quantum circuit model. Quantum Inform. Process. 17(6), 1–18 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, X.Q., Luo, W.Q., Weng, J., Yang, Y., Chen, M., Tan, X.Q.: A hybrid universal blind quantum computation. Inform. Sci. 498, 135–143 (2019)

    Article  MathSciNet  Google Scholar 

  28. Tan, X.Q., Zhou, X.: Universal half-blind quantum computation. Ann Tlcommun. 72(9-10), 589–595 (2017)

    Article  Google Scholar 

  29. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)

  30. Briegel, H.J., Browne, D.E., Dr, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat Phys. 111, 65–118 (2009)

    Google Scholar 

  31. Broadbent, A., Fitzsimons, J., Kashefi, E.: Measurement-based and universal blind quantum computation. In: International School on Formal Methods for the Design of Computer, Communication and Software Systems, pp 43–86. Springer, Berlin (2010)

  32. Morimae, T, Fujii, K.: Blind topological measurement-based quantum computation. Nat. Commun. 3, 1036 (2012)

    Article  ADS  Google Scholar 

  33. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. L 98(19), 190504 (2007)

    Article  ADS  Google Scholar 

  34. Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. 87(5), 050301 (2013)

    Article  Google Scholar 

  35. Sun, Z., Li, Q., Yu, F., Chan, W.H.: Application of blind quantum computation to two-party quantum computation. Int. J. Theor. Phys. 57(6), 1864–1871 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yao, A.C.: In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  37. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing Nat., vol. 12, pp. 218–229 (1987)

  38. Rabin, M.O.: How to exchange secrets by oblivious transfer. IACR Cryptology ePrint Archive, 187 (2005)

  39. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Acm Sigact News. 15, 34–39 (1983)

    Article  MATH  Google Scholar 

  40. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. 96(1), 012303 (2017)

    Article  ADS  Google Scholar 

  41. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. 115, 220502 (2015)

    Google Scholar 

Download references

Acknowledgments

The research is partly supported by National Natural Science Foundation of China (Grant No.61672014), National Cryptography Development Fund of China (Grant No.MMJJ20180109), and Natural Science Foundation of Guangdong Province of China (Grant No.2019A1515022069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqing Tan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Tan, X. & Song, T. Secure Multi-Party Quantum Private Information Query. Int J Theor Phys 59, 1099–1108 (2020). https://doi.org/10.1007/s10773-020-04391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04391-7

Keywords

Navigation