Skip to main content
Log in

Quantum Correlation and Coherence in Dissipative Two SC-Qubit Systems Interacting with a Coherent SC-Cavity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An analytical solution of the master equation is obtained for a coherent SC-cavity interacts with two SC-qubits. With this solution, the effect of an intrinsic decoherence on the growth of coherence loss (mixture) and the entanglement degradation is shown. Due to the intrinsic decoherence, the oscillatory behavior of the qubit-inversion is deteriorated, and its amplitude decreases. Where its stationary state refers to that the energy is stored more in the SC-qubits. The growth of the mixture is investigated for the entire system and its sub-systems of the SC-cavity and two qubits. The entanglement is studied for two different partitions, between the SC-cavity and the two qubits as well as between the two qubits. It is found that the generation of the entanglement and mixture and their stationary values depend on the initial coherence intensity and the intrinsic decoherence rate. The stationary entanglement and mixture, and the phenomena of sudden appearance and disappearance of the entanglement could be controlled by adjusting the intrinsic noise rate and the initial coherence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, H., Suh, S.J.: Phys. Rev. D 89, 066012 (2014)

    Article  ADS  Google Scholar 

  2. Bianchi, E., De Lorenzo, T., Smerlak, M.: J. High Energy Phys. 2016, 180 (2015)

    Article  Google Scholar 

  3. Alba, V., Calabrese, P.: Proc. Natl. Acad. Sci. 114, 7947 (2017)

    Article  ADS  Google Scholar 

  4. Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A.: Nature 528, 77 (2015)

    Article  ADS  Google Scholar 

  5. Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Science 353, 794 (2016)

    Article  ADS  Google Scholar 

  6. Jha, P.K., Eleuch, H., Rostovtsev, Y.V.: Phys. Rev. A 82, 045805 (2010)

    Article  ADS  Google Scholar 

  7. Mohamed, A.-B.: Phys. Lett. A 374, 4115 (2010)

    Article  ADS  Google Scholar 

  8. Sete, E.A., Svidzinsky, A.A., Rostovtsev, Y.V., Eleuch, H., Jha, P.K., Suckewer, S., Scully, M.O.: IEEE J. Sel. Top. Quantum Electron. 18, 541 (2012)

    Article  ADS  Google Scholar 

  9. Mohamed, A.-B., Eleuch, H.: Eur. Phys. J. D 69, 191 (2015)

    Article  ADS  Google Scholar 

  10. Berrada, K., Abdel-Khalek, S., Eleuch, H., Hassouni, Y.: Quantum Inf. Process. 12, 69 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: J. Phys. A: Math. Theor. 47, 335301 (2014) and Ann. Phys. 366, 32 (2016)

    Article  Google Scholar 

  12. Nakamura, Y., Pashkin, Y.A., Tsai, J.S.: Nature 398, 786 (1999)

    Article  ADS  Google Scholar 

  13. You, J.Q., Nori, F.: Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  14. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y.-X., Nori, F.: Phys. Rep. 1, 1718 (2017)

    Google Scholar 

  15. Metwally, N.: J. Opt. Soc. Am. B 29, 389 (2012)

    Article  ADS  Google Scholar 

  16. Mohamed, A.-B.A., Metwally, N.: Ann. Phys. 381, 137 (2017)

    Article  ADS  Google Scholar 

  17. Mohamed, A.-B.A., Hessian, H.A.: Physica E 44, 1552 (2012)

    Article  ADS  Google Scholar 

  18. Said, T., Chouikh, A., Essammouni, K.: Quant. Inf. Comput. 16, 0465 (2016)

    Google Scholar 

  19. Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A., Homid, A.H.: J. Opt. Soc. Am. B 30, 1178 (2013) and Quant. Inf. Process. 13, 475 (2014)

    Article  ADS  Google Scholar 

  20. Eleuch, H., Rotter, I.: Eur. Phys. J. D 69, 229 (2015)

    Article  ADS  Google Scholar 

  21. Mohamed, A.-B.A.: Int. J. Theor. Phys. 51, 2779 (2012)

    Article  Google Scholar 

  22. Eleuch, H., Rotter, I.: Phys. Rev. A 95, 022117 (2017)

    Article  ADS  Google Scholar 

  23. Eleuch, H., Rotter, I.: Eur. Phys. J. D 68, 74 (2014)

    Article  ADS  Google Scholar 

  24. Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  26. Li, S.-B., Xu, J.-B.: Phys. Rev. A 72, 022332 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Guo, J.-L, Song, H.-S.: J. Mod. Opt. 56, 496 (2009)

    Article  ADS  Google Scholar 

  28. Zheng, L., Zhang, G.-F.: Eur. Phys. J. D 71, 288 (2017)

    Article  ADS  Google Scholar 

  29. He, Q.-L., Xu, J.-B.: Opt. Commun. 284, 3649 (2011)

    Article  ADS  Google Scholar 

  30. Obada, A.-S.F., Mohamed, A.-B.A.: Opt. Commun. 309, 236 (2013)

    Article  ADS  Google Scholar 

  31. Fan, K.-M., Zhang, G.: Eur. Phys. J. D 68, 163 (2014)

    Article  ADS  Google Scholar 

  32. Mohamed, A.-B.A.: Rep. Math. Phys. 72, 121 (2013)

    Article  ADS  Google Scholar 

  33. Obada, A.-S.F., Abdel-Hafez, A.M., Hessian, H.A.: J. Phys. B 31, 5085 (1998)

    Article  ADS  Google Scholar 

  34. Anwar, S.J., Ramzan, M., Khan, M.K.: Quantum Inf. Process. 16, 142 (2017)

    Article  ADS  Google Scholar 

  35. Obada, A.-S.F., Hessian, H.A.: J. Opt. Soc. Am. B 21, 1535 (2004)

    Article  ADS  Google Scholar 

  36. Hessian, H.A., Ritsch, H.: J. Phys. B 35, 4619 (2002)

    Article  ADS  Google Scholar 

  37. Mohamed, A.-B.A., Metwally, N.: Physica E 102, 1 (2018)

    Article  ADS  Google Scholar 

  38. Makhlin, Y., Schon, G., Shnirman, A.: Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  39. You, J.Q., Nori, F.: Physica E 18, 33 (2003)

    Article  ADS  Google Scholar 

  40. Liu, Y.-X., Wei, L.F., Nori, F.: Phys. Rev. A 72, 033818 (2005)

    Article  ADS  Google Scholar 

  41. Xiang, Z.-L., Ashhab, S., You, J.Q., Nori, F.: Rev. Mod. Phys. 85, 624 (2013)

    Article  ADS  Google Scholar 

  42. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  43. Henderson, L., Vedral, V.: Phys. Rev. Lett. 84, 2263 (2000)

    Article  ADS  Google Scholar 

  44. Phoenix, S.J.D., Knight, P.L.: Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  45. Obada, A.-S.F., Hessian, H.A., Mohamed, A.-B.A.: Laser Phys. 18, 1111 (2008) and in Opt. Commun. 281, 5189 (2008)

    Article  ADS  Google Scholar 

  46. Araki, H., Lieb, E.: Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  Google Scholar 

  47. Abdalla, M.S., Khalil, E.M., Obada, A.S.-F., Peřina, J., Křepelka, J.: Eur. Phys. J. Plus 130, 227 (2015)

    Article  Google Scholar 

  48. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  49. Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  50. Eberly, J.H., Yu, T.: Science 316, 555 (2007)

    Article  Google Scholar 

  51. Yu, T., Eberly, J.H.: Science 323, 598 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  52. Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Physica A 390, 519 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is very grateful to the referees for their important remarks which have helped him to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, the (3) can be rewritten as:

$$ \frac{d}{dt}\hat{\rho}=\hat{L}\hat{\rho }, $$
(16)

where the super-operator \( \hat{L} \) is given by:

$$ \hat{L}\ast =-i\left[\hat{H},\ast \right]-\frac{1}{2\gamma}\left[{\hat{H}}^2\ast -2\hat{H}\ast \hat{H}+\ast {\hat{H}}^2\right]. $$
(17)

Therefore,

$$ \hat{\rho}(t)={e}^{\hat{L}t}\hat{\rho}(0). $$
(18)

Then, we write the initial density matrix in terms the used eigenstates \( \mid {\psi}_i^m\Big\rangle \) of (6) as:

$$ {\displaystyle \begin{array}{rcl}\rho (0)& =& \sum \limits_{m,n=0}{\eta}_{m,n}\left[{a}_m\sqrt{2}|{\psi}_1^m\Big\rangle +{b}_m\left(|{\psi}_2^m\Big\rangle +|{\psi}_3^m\Big\rangle \right)\right]\\ {}& & \times \left[{a}_n\sqrt{2}\right\langle {\psi}_1^n\mid +{b}_n\left(\right\langle {\psi}_2^n\mid +\left\langle {\psi}_3^n\mid \right)\Big].\end{array}} $$
(19)

With the super-operator \( \hat{L} \), the time evolution of the density matrices \( \mid {\psi}_i^m\left\rangle \right\langle {\psi}_j^n\mid \) is given by

$$ {\displaystyle \begin{array}{rcl}{e}^{\hat{L}t}\mid {\psi}_i^m\left\rangle \right\langle {\psi}_j^n\mid & =& {\beta}_{ij}^{mn}\mid {\psi}_i^m\left\rangle \right\langle {\psi}_j^n\mid \\ {}& =& {e}^{\left[-,i,\left({\varepsilon}_i^m,-,{\varepsilon}_j^n\right),t,-,\frac{1}{2\gamma },{\left({\varepsilon}_i^m,-,{\varepsilon}_j^n\right)}^2,t\right]}\mid {\psi}_i^m\left\rangle \right\langle {\psi}_j^n\mid .\end{array}} $$
(20)

By using the (1820), we get the final density matrix, \( \hat{\rho}(t) \), as in the (5). After that, we write the final density matrix, \( \hat{\rho}(t) \) in the space states {|v1〉 = |eAeB,n〉,|v2〉 = |eAgB,n + 1〉,|v3〉 = |gAeB,n + 1〉,|v4〉 = |gAgB,n + 2〉} by using (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Hessian, H.A. Quantum Correlation and Coherence in Dissipative Two SC-Qubit Systems Interacting with a Coherent SC-Cavity. Int J Theor Phys 58, 3521–3534 (2019). https://doi.org/10.1007/s10773-019-04218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04218-0

Keywords

Navigation