Skip to main content
Log in

The Properties of the Polarons’ Ground State in Coupling Spherical Quantum Dots

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Investigations on the properties of polarons in coupling quantum dots (QDs) are useful for the designs of quantum devices and applications of QDs. Based on accurately solving the time-independent Schrödinger equation, the famous Lee-Low-Pines unitary transformation (LLPUT) and variation methods, we have obtained the ground state energy of polarons in two spherical quantum dots (TSQD) with Coulomb interaction. The numerical results show that Coulomb interaction energy, electronic kinetic energy, induced potential and the ground state energy all decrease with increasing the interval of spherical centers or radius of quantum dot (QD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Musial, A., Hopfmann, C., Heindel, T., Gies, C., Florian, M., Leymann, H.A.M., Foerster, A., Schneider, C., Jahnke, F., Hofling, S., Kamp, M., Reitzenstein, S.: Correlations between axial and lateral emission of coupled quantum dot-micropillar cavities. Phys. Rev. B. 91, 205310 (2015)

    Article  ADS  Google Scholar 

  2. Hellmuller, S., Bischoff, D., Muller, T., Beck, M., Ensslin, K., Ihn, T.: Spin pairs in a weakly coupled many-electron quantum dot. Phys. Rev. B. 92, 115401 (2015)

    Article  ADS  Google Scholar 

  3. Ardelt, P.L., Gawarecki, K., Muller, K., Waeber, A.M., Bechtold, A., Oberhofer, K., Daniels, J.M., Klotz, F., Bichler, M., Kuhn, T., Krenner, H.J., Machnikowski, P., Finley, J.J.: Coulomb mediated hybridization of excitons in coupled quantum dots. Phys. Rev. Lett. 116, 077401 (2016)

    Article  ADS  Google Scholar 

  4. Wijesundara, K.C., Rolon, J.E., Ulloa, S.E., Bracker, A.S., Gammon, D., Stinaff, E.A.: Tunable exciton relaxation in vertically coupled semiconductor InAs quantum dots. Phys. Rev. B. 84, 081404 (2011)

    Article  ADS  Google Scholar 

  5. Deleporte, E., Hameau, S., Isaia, J.N., Guldner, Y., Verzelen, O., Ferreira, R., Bastard, G., Zeman, J., Gérard, J.M.: Strong electron-phonon coupling regime in self-assembled quantum dots. Phys. Status Solidi C. 1, 1391–1396 (2004)

    Article  ADS  Google Scholar 

  6. Zhou, X.R., Lee, J.H., Salamo, G.J., Royo, M., Climente, J.I., Doty, M.F.: Coulomb interaction signatures in self-assembled lateral quantum dot molecules. Phys. Rev. B. 87, 125309 (2013)

    Article  ADS  Google Scholar 

  7. Khordad, R.: Calculation of exchange interaction for modified Gaussian coupled quantum dots. Indian J. Phys. 91, 869–873 (2017)

    Article  ADS  Google Scholar 

  8. Lei, Y.G., Yang, C., Hou, J.H., Wang, F., Min, S.X., Ma, X.H., Jin, Z.L., Xu, J., Lu, G.X., Huang, K.W.: Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: unraveling the essential roles of graphene quantum dots. Appl. Catal. B. 216, 59–69 (2017)

    Article  Google Scholar 

  9. Giavaras, G., Nori, F.: Transport spectroscopy of a spin-orbit-coupled spin to a quantum dot. Phys. Rev. B. 94, 155419 (2016)

    Article  ADS  Google Scholar 

  10. Liu, N.W., Zhang, Y., Kang, C.X., Wang, Z.P., Yu, B.L.: Two-dimensional probe absorption in coupled quantum dots. Physica E. 81, 248–252 (2016)

    Article  ADS  Google Scholar 

  11. Roy-Choudhury, K., Mann, N., Manson, R., Hughes, S.: Resonance fluorescence spectra from coherently driven quantum dots coupled to slow-light photonic crystal waveguides. Phys. Rev. B. 93, 245421 (2016)

    Article  ADS  Google Scholar 

  12. Royo, M., Climente, J.I., Planelles, J.: Emission spectrum of quasiresonant laterally coupled quantum dots. Phys. Rev. B. 84, 235312 (2011)

    Article  ADS  Google Scholar 

  13. Wang, M., Yin, Y., Wu, M.W.: Electric manipulation of electron spin relaxation induced by confined phonons in nanowire-based double quantum dots. J. Appl. Phys. 109, 103713 (2011)

    Article  ADS  Google Scholar 

  14. Wang, H.X., Yin, W., Wang, F.W.: Spin current through double quantum dots with spin- and time-dependent interdot coupling. J. Appl. Phys. 109, 053710 (2011)

    Article  ADS  Google Scholar 

  15. Hung, K.M.: Theory of polaron resonance in quantum dots and quantum-dot molecules. J. Appl. Phys. 102, 023111 (2007)

    Article  ADS  Google Scholar 

  16. Dufåker, D., Mereni, L.O., Karlsson, K.F., Dimastrodonato, V., Juska, G., Holtz, P.O., Pelucchi, E.: Exciton-phonon coupling in single quantum dots with different barriers. Appl. Phys. Lett. 98, 251911 (2011)

    Article  ADS  Google Scholar 

  17. Koch, T., Fehske, H., Loos, J.: Phonon-affected steady-state transport through molecular quantum dots. Phys. Scr. 2012, 014039 (2012)

    Article  Google Scholar 

  18. Bagheri Tagani, M., Rahimpour Soleimani, H.: Phonon-assisted tunneling through a double quantum dot system. Phys. Scr. 86, 035706 (2012)

    Article  MATH  Google Scholar 

  19. Lu, X., Wang, J., Wu, C.Q.: Phonon effects in tunnelling through a double quantum dot molecule. Eur. Phys. J. B. 49, 325–331 (2006)

    Article  ADS  Google Scholar 

  20. Ramirez, H.Y., Camacho, A.S., Lew Yan Voon, L.C.: Coupling effects on electron-phonon scattering in double quantum dots. Phys. Status Solidi C. 4, 433–435 (2007)

    Article  ADS  Google Scholar 

  21. Vagov, A., Croitoru, M.D., Axt, V.M., Machnikowski, P., Kuhn, T.: Dynamics of quantum dots with strong electron phonon coupling: correlation expansion vs. path integrals. Phys. Status Solidi B. 248, 839–842 (2011)

    Article  ADS  Google Scholar 

  22. Muljarov, E.A., Zimmermann, R.: Exciton dephasing in quantum dots: coupling to LO phonons via excited states. Phys. Status Solidi B. 245, 1106–1109 (2008)

    Article  ADS  Google Scholar 

  23. Xiao, J.L., Zhao, C.L.: Properties of strong-coupling magnetopolaron in quantum rods. Superlattice Microst. 49, 103713–103716 (2011)

    Article  Google Scholar 

  24. Wang, C.T., Wu, Z.Y., Zhao, C.L., Ding, Z.H., Xiao, J.L.: The optical phonon effect of quantum rod qubits. Chin. Phys. B. 21, 537–541 (2012)

    Google Scholar 

  25. Cai, C.Y., Zhao, C.L., Xiao, J.L.: The coherence time of quantum rod qubit. Int. J. Theor. Phys. 54, 1269–1274 (2015)

    Article  MATH  Google Scholar 

  26. Zhao, C.L., Cai, C.Y., Xiao, J.L.: Influence of an anisotropic parabolic potential on the quantum dot qubit. J Semicond. 34, 112002 (2013)

    Article  Google Scholar 

  27. Cai, C.Y., Zhao, C.L., Xiao, J.L.: Effects of temperature on first-excited-state energy of the strong coupling magnetopolaron in 2D RbCl parabolic quantum dots. J. Low Temp. Phys. 178, 142–148 (2015)

    Article  ADS  Google Scholar 

  28. Cai, C.Y., Zhao, C.L., Xiao, J.L.: Effects of temperature on ground state binding energy of the strong coupling magnetopolaron in RbCl parabolic quantum dots. Indian J. Pure Appl. Phys. 54, 56–59 (2016)

    Google Scholar 

  29. Zhao, C.L., Cong, Y.C.: The phonon effect of polaron and qubit in spherical shell quantum dot. Acta Phys. Sin. 61, 186301 (2012)

    Google Scholar 

  30. Zhao, C.L., Wang, L.L., Zhao, L.L.: Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Phys. Sin. 64, 186301 (2015)

    Google Scholar 

  31. Cai, C.Y., Zhao, C.L., Xiao, J.L.: Influence of temperature and magnetic field on the first excited state of a quantum pseudodot. J Electron. Mater. 46, 971–973 (2017)

    Article  ADS  Google Scholar 

  32. Kruchinin, S.Y., Fedorov, A.V., Baranov, A.V., Perova, T.S., Berwick, K.: Electron-electron scattering in a double quantum dot: Effective mass approach. J. Chem. Phys. 133, 104704 (2010)

    Article  ADS  Google Scholar 

  33. Allan, G., Delerue, C.: Energy transfer between semiconductor nanocrystals: validity of Forster's theory. Phys. Rev. B. 75, 195311 (2007)

    Article  ADS  Google Scholar 

  34. Chikalova-Luzina, O.P., Samosvat, D.M., Zegrya, G.G.: The role of exchange interaction in nonradiative energy transfer between semiconductor quantum dots. Tech. Phys. Lett. 40, 350–352 (2014)

    Article  ADS  Google Scholar 

  35. Baranov, A.V., Rakovich, Y.P., Donegan, J.F., Perova, T.S., Moore, R.A., Talapin, D.V., Rogach, A.L., Masumoto, Y., Nabiev, I.: Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Phys. Rev. B. 68, 165306 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No.11464034, Natural Science Foundation of Inner Mogolia Autonomous Region of China under Grant No. 2016MS0119 and 2016BS0107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Lan Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CL., Li, SY., Cai, CY. et al. The Properties of the Polarons’ Ground State in Coupling Spherical Quantum Dots. Int J Theor Phys 58, 2711–2719 (2019). https://doi.org/10.1007/s10773-019-04161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04161-0

Keywords

Navigation