Skip to main content
Log in

The New Type of Extended Uncertainty Principle and Some Applications in Deformed Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we present a new type of extended uncertainty principle (EUP) of the form [X, P] = i(1 − q|X|) and show that it has the non-zero minimal momentum. For this EUP we discuss the classical mechanics in the curved space, deformed calculus, deformed quantum mechanics and Bohr-Sommerfeld quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snyder, H.S.: Phys. Rev. 71, 38 (1947)

    Article  ADS  Google Scholar 

  2. Yang, C.N.: Phys. Rev. 72, 874 (1947)

    Article  ADS  Google Scholar 

  3. Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. Mignemi, S.: Mod. Phys. Lett. A25, 1697 (2010)

    Article  ADS  Google Scholar 

  5. Chung, W.S., Hassanabadi, H.: J. Korean Phys. Soc. 71, 1 (2017)

    Article  Google Scholar 

  6. Chung, W.S., Hassanabadi, H.: Mod. Phys. Lett. A 32, 26 (2017)

    Google Scholar 

  7. Mignemi, S.: Phys. Rev. D 84, 025021 (2011)

    Article  ADS  Google Scholar 

  8. Filho, R., Braga, J., Lira, J., Andrade, J. Jr.: Phys. Lett. B 755, 367 (2016)

    Article  ADS  Google Scholar 

  9. Alsing, P.M., Evans, J.C., Nandi, K.K.: Gen. Relativ. Gravit. 33, 1459 (2001)

    Article  ADS  Google Scholar 

  10. Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Phys. Rev. D 68, 084005 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Donoghue, J.F., Holstein, B.R.: Am. J. Phys. 54, 827 (1986)

    Article  ADS  Google Scholar 

  12. Stodolsky, L.: Gen. Relativ. Gravit. 11, 391 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gupta, S.N.: Can. J. Phys. 35, 961 (1957)

    Article  ADS  Google Scholar 

  14. Kaplan, L., Maitra, N.T., Heller, E.J.: Phys. Rev. A 56, 2592 (1997)

    Article  ADS  Google Scholar 

  15. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  16. da Costa, R.C.T.: Phys. Rev. A 23, 1982 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. Tsallis, C.: J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  18. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer (2009)

Download references

Acknowledgements

The author acknowledges to reviewer for his (or her) helpful comments. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2015R1D1A1A01057792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Sang Chung.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

When x > 0, the deformed exponential function can also be written as

$$ e_q (1: x) = \sum\limits_{n=0}^{\infty} \frac{\left( \frac{1}{q} \right)_n}{n!} (q x)^n ={}_1 F \left( \frac{1}{q} ; ; qx \right) $$
(123)

When x < 0, the deformed exponential function can also be written as

$$ e_q (1: x) = \sum\limits_{n=0}^{\infty} \frac{\left( -\frac{1}{q} \right)_n}{n!} (q x)^n ={}_1 F \left( -\frac{1}{q} ; ; qx \right) $$
(124)

If we introduce the q-number as

$$ \{ N \}_q = \frac{N}{ 1 + q (N-1)} $$
(125)

we have

$$ e_q (1: x) = \left\{\begin{array}{lll} {\sum}_{N=0}^{\infty} \frac{x^N}{ \{ N\}_q! }~~~~ (x\ge 0)\\ {\sum}_{N=0}^{\infty} \frac{x^N}{ \{ N\}_{-q}! }~~~~ (x< 0) \end{array}\right. $$
(126)

where

$$ \{ 0\}_q! =1 $$
(127)

and

$$ \{ N\}_q! = \{ N\}_q \{ N-1\}_q {\cdots} \{ 2\}_q \{ 1\}_q, ~~~ (N \ge 1) $$
(128)

The q-Gamma function is defined by

$$ {\Gamma}_q (z) = {\int}_0^{1/q } \left( \frac{1-q}{1 - q t}\right) e_q (-1: t) t^{z-1} d_q t, $$
(129)

Limiting q → 0, the (129) reduces to an ordinary Gamma function. For z = N, (N = 0, 1, 2, ⋯), we have

$$ {\Gamma}_q (N+1 ) = \{ N\}_q! $$
(130)

The q-Gamma function satisfies the following recurrence relation:

$$ {\Gamma}_q(z+1) = \{ z \}_q {\Gamma}_q(z) $$
(131)

This is the q-analogue of basic functional relation for the ordinary Gamma function. The q-Gamma function for arbitrary number z can also be written as follows:

$$ {\Gamma}_q(z) = \lim\limits_{n \rightarrow \infty} \frac{ \{n\}_q! \{n\}_q^z }{ \{z\}_q \{ z+1 \}_q \{ z+2 \}_q{\cdots} \{ z+n \}_q } $$
(132)

Indeed, replacing z with z + 1, we have

$$ {\Gamma}_q(z+1) = \{ z \}_q {\Gamma}_q(z) $$
(133)

A glance at the (132) shows

$$ {\Gamma}_q(- n ) = \pm \infty, ~~~ for~ n \in Z_+ $$
(134)

and

$$ {\Gamma}_q(z ) =0 ~~~ for ~~ z = -\frac{1}{q}+1, -\frac{1}{q}, -\frac{1}{q}-1 , -\frac{1}{q}-2 , {\cdots} $$
(135)

From the definition (132), we have the third definition of q-Gamma function as follows:

$$ {\Gamma}_q(z) = \frac{\{1\}_q^z}{ \{z\}_q} \prod\limits_{k=1}^{\infty} \left( 1 + \frac{1}{k} \right)^{z} \left( 1 + \frac{z}{k} \right)^{-1} \left( 1 - \frac{q}{1-qk} \right)^{-z} \left( 1 - \frac{qz}{1-qk} \right) $$
(136)

Using the (136), we find the following relations for the product of two q-Gamma functions:

$$ \{ z \}_q ! \{ -z \}_q ! = \frac{ \pi z }{ \sin \pi z } \prod\limits_{k=1}^{\infty} \left[ 1 - \left( \frac{q}{1-qk} z \right)^2 \right] $$
(137)

Inserting z = 1/2 into the (137), we have

$$ {\Gamma}_q \left( \frac{1}{2} \right)= \sqrt{\frac{\pi}{q}} \frac{ {\Gamma} \left( \frac{1}{2} + \frac{1}{q} \right)}{ {\Gamma} \left( 1 + \frac{1}{q} \right)} $$
(138)

The q-deformed digamma function is defined as

$$ F(z) = D_z \ln_q \{z\}_q! $$
(139)

Using the property of the q-log function, we have the following result:

$$ F(z) = \frac{ (1 +q z ) {\prod}_{k=1}^{\infty}\{k \}_q^q }{ {\prod}_{k=1}^{\infty}\{ z + k \}_q^q } \lim\limits_{n \rightarrow \infty} \left[ \{n \}_q^{qz} \ln \{ n \}_q - \sum\limits_{k=1}^n \left( \frac{1}{z+k} - \frac{ q}{ 1 + q (z + k ) } \right)\right] $$
(140)

Inserting z = 0 into the (140) yields

$$ F(0) = - \gamma_q $$
(141)

where the q-analogue of Euler constant is then given by

$$ \gamma_q = \lim\limits_{n \rightarrow \infty} \left[ \sum\limits_{k=1}^{\infty} \left( \frac{1}{k } - \frac{ q}{ 1 + qk} \right)- \ln \{ n \}_q \right] $$
(142)

Appendix B: Nikiforov - Uvarov Method

In this technique, we solve a second-order differential equation in the form of a hypergeometric-type or a general Schrodinger-type equation [1, 2],

$$ \left[ \frac{d^2}{ds^2} + \frac{\alpha_1-\alpha_2 s }{s(1 - \alpha_3 s) } \frac{d}{ds} + \frac{ -\lambda_1 s^2 + \lambda_2 s -\lambda_3 }{[s(1 - \alpha_3 s)]^2} \right] \psi_n (s)=0 $$
(143)

For calculation of eigenvalues and corresponding wave functions of the energy by using this approach, we try to obtain the following parameters

$$ \begin{array}{@{}rcl@{}} \alpha_4 = \frac{1}{2} (1 - \alpha_1), ~\alpha_5 = \frac{1}{2} (\alpha_2 - 2 \alpha_3), ~ \alpha_6 = \alpha_5^2 + \lambda_1, ~ \alpha_7 = 2 \alpha_4 \alpha_5 -\lambda_2, ~\alpha_8 =\alpha_4^2 + \lambda_3 \\\alpha_9 =\alpha_3 \alpha_7 + \alpha_3^2 \alpha_8 + \alpha_6, ~ \alpha_{10} =\alpha_1 + 2 \alpha_4 + 2 \sqrt{ \alpha_8}, ~ \alpha_{11} = \alpha_2 - 2 \alpha_5 +2 (\sqrt{ \alpha_9} + \alpha_3 \sqrt{ \alpha_8}), \\\alpha_{12} = \alpha_4 + \sqrt{\alpha_8} , ~ \alpha_{13} = \alpha_5 - (\sqrt{\alpha_9}+\alpha_3 \sqrt{\alpha_8}) \end{array} $$
(144)

The energy relation using the set of parameters mentioned above forms an energy equation as,

$$ \alpha_2 n - (2n+1) \alpha_5 + (2n+1) (\sqrt{\alpha_9}+\alpha_3 \sqrt{\alpha_8}) + n (n-1) \alpha_3 + \alpha_7 + 2 \alpha_3 \alpha_8 + 2 \sqrt{ \alpha_8 \alpha_9} =0 $$
(145)

Also, the final wave function relation in NU method will be of the following form,

$$ \psi_n(s) = s^{\alpha_{12}} (1 - \alpha_3 s)^{- \alpha_{13} /\alpha_3} P_n^{\left( \alpha_{10} -1, \alpha_{11}/\alpha_3 - \alpha_{10} -1 \right)} (1 - 2 \alpha_3 s) $$
(146)

If α3 = 0 , the relation (147) will be reduced to

$$ \psi_n(s) = s^{\alpha_{12}} e^{\alpha_{13}s} L_n^{\alpha_{10} -1} (\alpha_{11} s) $$
(147)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, W.S. The New Type of Extended Uncertainty Principle and Some Applications in Deformed Quantum Mechanics. Int J Theor Phys 58, 2575–2591 (2019). https://doi.org/10.1007/s10773-019-04146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04146-z

Keywords

Navigation