Skip to main content
Log in

Security Analysis of Practical Continuous-Variable Quantum Key Distribution Using a Heralded Noiseless Amplifier

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The noiseless linear amplifier(NLA) can probabilistically amplify the amplitude of the coherent state while retaining the initial level of noise. It is widely proposed and discussed to enhance various CVQKD protocols. In the previous work, when analyzing the security of the NLA-based CVQKQ protocol, they usually included the impact of NLA in a set of equivalent parameters. In this article, we develop this equivalent method and propose a new one to analyze the protocol with NLA which simplifies the computational complexity. In particular, we have further considered the effect of NLA on entanglement parameter of the EPR state. Then by using our proposed method, we first obtain the secret key rate of the NLA-enhanced CVQKD system with imperfect detection. The results show that the NLA can also improve the transmission distance of CVQKD protocols with imperfect detection by equivalent \(20\log _{10}g\) dB of losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009)

    Article  ADS  Google Scholar 

  2. La Cour-Harbo, A., Jensen, A.: Wavelets and the lifting scheme. In: Encyclopedia of Complexity and Systems Science, pp. 10007–10031. Springer (2009)

  3. Gong, L.-H., Li, J.-F., Zhou, N.-R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)

    Article  ADS  Google Scholar 

  4. Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable ghz states. Quantum Inf. Process 17(12), 331 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zhao, W., Guo, Y., Zhang, L., Huang, D.: Phase noise estimation using bayesian inference for continuous-variable quantum key distribution. Optics express 27(3), 1838–1853 (2019)

    Article  ADS  Google Scholar 

  6. Guo, Y., Xie, C., Liao, Q., Zhao, W., Zeng, G., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96(2), 022320 (2017)

    Article  ADS  Google Scholar 

  7. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  8. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  9. Renner, R., Cirac, J.I.: de finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    Article  ADS  Google Scholar 

  10. García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  11. Navascués, M., Grosshans, F., Acín, A.: Optimality of gaussian attacks in continuous-variable quantum cryptography. Phys. Rev Lett. 97, 190502 (2006)

    Article  ADS  Google Scholar 

  12. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)

    Article  ADS  Google Scholar 

  13. Leverrier, A., Grangier, P.: Simple proof that gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a gaussian modulation. Phys. Rev. A 81, 062314 (2010)

    Article  ADS  Google Scholar 

  14. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110, 030502 (2013)

    Article  ADS  Google Scholar 

  15. Leverrier, A.: Security of continuous-variable quantum key distribution via a gaussian de finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)

    Article  ADS  Google Scholar 

  16. Qi, B., Zhu, W., Qian, L., Lo, H.-K.: Feasibility of quantum key distribution through a dense wavelength division multiplexing network. New J. Phys. 12(10), 103042 (2010)

    Article  ADS  Google Scholar 

  17. Cerf, N.J., Grangier, P.: From quantum cloning to quantum key distribution with continuous variables: a review. JOSA B 24(2), 324–334 (2007)

    Article  ADS  Google Scholar 

  18. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  19. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  20. Ferreyrol, F., Barbieri, M., Blandino, R., Fossier, S., Tualle-Brouri, R., Grangier, P.: Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010)

    Article  ADS  Google Scholar 

  21. Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R., Grangier, P.: Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801 (2011)

    Article  ADS  Google Scholar 

  22. Xiang, G.-Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4(5), 316 (2010)

    Article  Google Scholar 

  23. Xu, B., Tang, C., Chen, H., Zhang, W., Zhu, F.: Improving the maximum transmission distance of four-state continuous-variable quantum key distribution by using a noiseless linear amplifier. Phys. Rev. A 87, 062311 (2013)

    Article  ADS  Google Scholar 

  24. Walk, N., Lund, A.P., Ralph, T.C.: Nondeterministic noiseless amplification via non-symplectic phase space transformations. New J. Phys. 15(7), 073014 (2013)

    Article  ADS  Google Scholar 

  25. Guo, Y., Li, R., Liao, Q., Zhou, J., Huang, D.: Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier. Phys. Lett. A 382(6), 372–381 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Skornia, C., von Zanthier, J., Agarwal, G.S., Werner, E., Walther, H.: Nonclassical interference effects in the radiation from coherently driven uncorrelated atoms. Phys. Rev. A 64(6), 063801 (2001)

    Article  ADS  Google Scholar 

  27. Caves, C.M.: Quantum limits on noise in linear amplifiers. Phys. Rev. D 26(8), 1817 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  28. Levenson, J.A., Abram, I., Rivera, T.H., Grangier, P.H.: Reduction of quantum noise in optical parametric amplification. JOSA B 10(11), 2233–2238 (1993)

    Article  ADS  Google Scholar 

  29. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B Atomic Mol. Phys. 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  30. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. arXiv Quant. Phys. 1110(1), 155–160 (2009)

    Article  MATH  Google Scholar 

  31. Chrzanowski, H.M., Walk, N., Assad, S.M., Janousek, J., Hosseini, S., Ralph, T.C., Symul, T., Lam, P.K.: Measurement-based noiseless linear amplification for quantum communication. Nat. Photonics 8(4), 333 (2014)

    Article  ADS  Google Scholar 

  32. Li, Z., Zhang, Y., Wang, X., Xu, B., Peng, X., Guo, H.: Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution. Phys. Rev. A 93(1), 012310 (2016)

    Article  ADS  Google Scholar 

  33. Blandino, R., Leverrier, A., Barbieri, M., Etesse, J., Grangier, P., Tualle-Brouri, R.: Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012)

    Article  ADS  Google Scholar 

  34. Zhang, Y., Li, Z., Weedbrook, C., Marshall, K., Pirandola, S., Yu, S., Guo, H.: Noiseless linear amplifiers in entanglement-based continuous-variable quantum key distribution. Entropy 17(7), 4547–4562 (2015)

    Article  ADS  Google Scholar 

  35. Li, C., Miao, R., Gong, X., Guo, Y., He, G.: Performance improvement of two-way quantum key distribution by using a heralded noiseless amplifier. Int. J. Theor. Phys. 55(4), 2199–2211 (2016)

    Article  MATH  Google Scholar 

  36. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Performance improvement of plug-and-play dual-phase-modulated quantum key distribution by using a noiseless amplifier. Entropy 19(10), 546 (2017)

    Article  ADS  Google Scholar 

  37. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009)

    Article  ADS  Google Scholar 

  38. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National key research and development program (Grant No. 2016YFA0302600) and the National Natural Science Foundation of China (Grants No. 61332019, 61671287, 61631014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Acquisition of the Equivalent Entanglement Parameter

In this appendix, we discuss the acquisition of the equivalent entanglement parameter λt. As we know, if we trace out one of the two output modes of a two-mode squeezed state which has an equivalent parameter λ, we obtain a thermal state ρ. And the state ρ can be decomposed on an ensemble of coherent states using the P function,

$$ \rho=\int P(\alpha)|\alpha\rangle\langle\alpha|d\alpha, $$
(19)

where \(P(\alpha )=\frac {1-\lambda ^{2}}{\pi \lambda ^{2}}e^{-\frac {1-\lambda ^{2}}{\lambda ^{2}}|\alpha |^{2}}=Ae^{-\frac {1-\lambda ^{2}}{\lambda ^{2}}|\alpha |^{2}}\). The above equation can be used to EB scheme, where one output mode of a two-mode squeezed state is sent to Bob through the channel, and P(α) is the probability that the coherent state |α〉 is transmitted.

In channel, the coherent state |α〉 is attenuated and simultaneously affected by the channel excess noise, which we can then record as \(|\alpha ^{\prime }\rangle \). Here we can obtain the condition that \(|\alpha ^{\prime }|^{2}=T|\alpha |^{2}+T\epsilon \), where ϵ is the variance of the channel excess noise. And then the state \(|\alpha ^{\prime }\rangle \) is amplified and selected by the NLA. Here we only care about the selection effect since we only wants to find the equivalent parameter λt of the EPR state, and we can describe this effect using (3). Substituting \(|\alpha ^{\prime }\rangle \) into the (3), we can calculate the successfully amplified probability \(P_{sel}(\alpha )=\eta ^{N}e^{-(1-g^{2})|\alpha ^{\prime }|^{2}}\). This probability is equivalent to pre-screening our EPR state, since only the successful amplified case is reserved.

Considering the pre-screening effect of the NLA, the output mode of the EPR state that is sent to Bob can be rewritten as

$$ \begin{array}{@{}rcl@{}} &&\rho^{\prime} \propto\int P(\alpha)P_{sel}(\alpha)|\alpha\rangle\langle\alpha|d\alpha\\ &&\propto\frac{1-\lambda^{2}}{\pi\lambda^{2}}e^{-(1-g^{2})T\epsilon}\int e^{\left( -\frac{1-\lambda^{2}}{\lambda^{2}}-T(1-g^{2})\right)|\alpha|^{2}}|\alpha\rangle\langle\alpha|d\alpha\\ &&=A^{\prime}\int e^{\left( -\frac{1-\lambda^{2}}{\lambda^{2}}-T(1-g^{2})\right)|\alpha|^{2}}|\alpha\rangle\langle\alpha|d\alpha. \end{array} $$
(20)

For the new thermal state \(\rho ^{\prime }\), its corresponding entanglement parameter λt should satisfy the condition that

$$ P(\alpha)=A^{\prime} e^{-\frac{1-{\lambda_{t}^{2}}}{{\lambda_{t}^{2}}}|\alpha^{2}|}=A^{\prime} e^{\left( -\frac{1-\lambda^{2}}{\lambda^{2}}-T(1-g^{2})\right)|\alpha|^{2}}. $$
(21)

And using it we can find the equivalent entanglement parameter λt as follows,

$$ \lambda_{t}=\frac{\lambda}{\sqrt{1-T\lambda^{2}(g^{2}-1)}}. $$
(22)

Appendix B: Acquisition of the Channel Equivalent Parameter

In this appendix, we detail the acquisition of the channel equivalent parameter Tt and ϵt. And they can be obtained from the following equation which describes the NLA’s influence on a displaced input thermal state \(\hat \rho (\lambda _{0})\) and the NLA’s output state \(\hat \rho ^{\prime }\) can be described as

$$ \hat\rho^{\prime}\propto \hat D (\widetilde g \beta)\hat\rho(g\lambda_{0})\hat D(\widetilde g \beta), $$
(23)

where β stands for the displacement of the thermal state, the parameter \(\widetilde g = g\frac {{1-{\lambda _{0}^{2}}}}{1-g^{2}{\lambda _{0}^{2}}}\), g is the gain of the NLA, λ0 is the parameter of the input thermal state \(\hat \rho (\lambda _{0})=(1-{\lambda _{0}^{2}}){\sum }_{n=0}^{\infty }\lambda _{0}^{2n}|n\rangle \langle n|\), and the \(\hat \rho ^{\prime }\) is the state we get at the other end of the NLA. This equation means that an input thermal state \(\hat \rho (\lambda _{0})\) displaced by β = βx + iβy will be changed by the NLA to another state \(\hat \rho ^{\prime }\), \(\hat \rho ^{\prime }\) is proportional to \((1-g^{2}{\lambda _{0}^{2}}){\sum }_{n=0}^{\infty }{(g\lambda _{0})}^{2n}|n\rangle \langle n|\), and its displacement is proportional to \(\widetilde g\beta \).

The above equation describes the NLA’s amplification effect on the transmitted thermal state in channel. In the quantum channel a transmitted coherent state along with the excess noise acts as a thermal state. If a NLA is added, it amplifies the thermal state. What we want to find is an equivalent channel to generate the amplified thermal state without the NLA.

First, we consider the change of the state when we modulate nothing. In this condition VA is zero, the variance of the input thermal state ρ(λch) equals to the sum of the excess noise and shot noise, so we can find that

$$ \frac{1+\lambda_{ch}^{2}}{1-\lambda_{ch}^{2}}=T\epsilon+1. $$
(24)

After NLA’s amplification, the parameter λch will be changed to gλch. And according to (24), \(\lambda _{ch}^{2}=\frac {T\epsilon }{2+T\epsilon }\), we find the first function describing the changes of the thermal state,

$$ \begin{array}{@{}rcl@{}} &&\frac{T\epsilon}{2+T\epsilon}\xrightarrow{NLA}g^{2}\frac{T\epsilon}{2+T\epsilon}\\ &&\frac{T_{t}\epsilon_{t}}{2+T_{t}\epsilon_{t}}=g^{2}\frac{T\epsilon}{2+T\epsilon}. \end{array} $$
(25)

Then we only consider the state that is modulated by Alice and ignore the noise. Always a coherent state is generated by displacing a vacuum state. After a coherent state transmitted through the channel, the excess noise changes this displaced vacuum state to a displaced thermal state. If the displaced value we modulated is β = βx + iβy, under the effect of the NLA, it changes to \(\widetilde g\beta \) according to (23). The amplification of the states’s amplitude will change the variance of the state received by Bob. Through the NLA, the variance of the transmitted coherent state TV (λ) will be changed to \({\widetilde g}^{2}TV(\lambda )\). Without considering the noise, we can get the second equation describing the changes of the thermal state, here \(\lambda _{ch}^{2}=\frac {T\epsilon }{2+T\epsilon }\),

$$ \begin{array}{@{}rcl@{}} \sqrt{T}\beta_{x(y)}\xrightarrow{NLA}g\frac{{1-\lambda_{ch}^{2}}}{1-g^{2}\lambda_{ch}^{2}}\sqrt{T}\beta_{x(y)} \\ T_{t}\frac{1+{\lambda_{t}^{2}}}{1-{\lambda_{t}^{2}}}=(g\frac{{1-\lambda_{ch}^{2}}}{1-g^{2}\lambda_{ch}^{2}})^{2}T\frac{1+\lambda^{2}}{1-\lambda^{2}}. \end{array} $$
(26)

Last, we consider the total thermal state at Bob’s device. In the quantum channel \(\hat \rho (\lambda _{tot})=(1-\lambda _{tot}^{2}){\sum }_{n=0}^{\infty }\lambda _{tot}^{2n}|n\rangle \langle n|\), using the same method we can know the NLA will change the parameter λtot to gλtot, the third equation can be expressed as

$$ \begin{array}{@{}rcl@{}} \frac{T(1+\lambda^{2})+T\epsilon(1-\lambda^{2})}{(2+T\epsilon)(1-\lambda^{2})+T(1+\lambda^{2})}\\ \xrightarrow{NLA}g^{2}\frac{T(1+\lambda^{2})+T\epsilon(1-\lambda^{2})}{(2+T\epsilon)(1-\lambda^{2})+T(1+\lambda^{2})} \\ \frac{T_{t}(1+{\lambda_{t}^{2}})+T_{t}\epsilon_{t}(1-{\lambda_{t}^{2}})}{(2+T_{t}\epsilon_{t})(1-{\lambda_{t}^{2}})+T_{t}(1+{\lambda_{t}^{2}})}\\ =g^{2}\frac{T(1+\lambda^{2})+T\epsilon(1-\lambda^{2})}{(2+T\epsilon)(1-\lambda^{2})+T(1+\lambda^{2})}. \end{array} $$
(27)

Generally speaking, using the three Eqs. (25), (26), (27) above, we can find three corresponding equivalent parameters. But actually, using Eqs. (25), (26) we can deduce the Eq. (27). It means that just considering the effect of NLA only two equivalent parameters can be found. In the previous works, they make mistakes when finding the Eq. (27). So, wrongly effective parameters are deduced, and the solutions don’t match the fact.

In fact, just considering the successfully amplified cases, only two effective parameters can be found, and the effective parameter λt should be found from method we proposed in Appendix A. And the two parameters can be expressed as follows,

$$ \begin{array}{@{}rcl@{}} &&T_{t} = \frac{4g^{2}}{[T\epsilon(1-g^{2})+2]^{2}}T \\ &&\epsilon_{t} = \epsilon-\frac{1}{2}T(g^{2}-1)\epsilon^{2}. \end{array} $$
(28)

Through the equations above, the parameters Tt an ϵt can be calculated easily. The NLA’s linear amplification effect is included in the (28) when the NLA successfully runs. Together with the (22) in Apendix A, they gives us the three effective parameters. When we calculate with the secret key rate, we can just using the parameters λtTt and ϵt instead of λ, T and ϵ, even with the imperfect detection device added.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huang, P., Li, D. et al. Security Analysis of Practical Continuous-Variable Quantum Key Distribution Using a Heralded Noiseless Amplifier. Int J Theor Phys 58, 2392–2406 (2019). https://doi.org/10.1007/s10773-019-04131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04131-6

Keywords

Navigation