Skip to main content
Log in

Improved Handwritten Digit Recognition using Quantum K-Nearest Neighbor Algorithm

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Handwritten numeral recognition is a technology for automatic recognition and classification of handwritten numeral input through machine learning model. This is widely used in postal code digital automatic system to sort letters. The classical k-nearest neighbor algorithm is used in the traditional digital recognition training model. The recognized digital image classification is obtained through similarity measure or calculation and K value selection. Nonetheless, as the applied data volume exceeds a certain threshold, the time complexity of the model increases exponentially upon the similarity measure and K value search. This condition makes it hard to apply the model universally. In this paper, we introduce quantum computing, that is where digital image information is stored in the quantum state, and its similarity is calculated in parallel. Also, the most similar K points are obtained through the Grover algorithm. The theoretical analysis of the proposed improved algorithm shows that, handwritten numeral recognition based on quantum k-neighbor algorithm can improved upon time complexity of \( \mathrm{O}\left(\mathrm{R}\sqrt{kM}\right) \) of the existing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. chen, W., Gao, Y., Zhang, J.: Quantum K- neighbor algorithm [J]. Journal of Southeast University (Science Edition). 45(4), 647–651 (2015)

    MathSciNet  Google Scholar 

  2. Yoo, S., Bang, J., Lee, C., Lee, J.: A quantum speedup in machine learning: finding an N-bit Boolean function for a classification. New J. Phys. 16(10), 103014 (2014)

    Article  ADS  Google Scholar 

  3. Huang, Y.M., Lei, H., Li, X.: Overview of quantum machine learning algorithms [J]. Chinese Journal of Computers. 41(1), 145–163 (2018)

    MathSciNet  Google Scholar 

  4. Lu, S.C., Zhen, Y., Li, X., Wu, R.: Quantum Machine Learning [J]. Control Theory and Applications. 34(11), 1429–1436 (2017)

    Google Scholar 

  5. Godfrin, C., Ferhat, A., Ballou, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W., Balestro, F.: Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm. Phys. Rev. Lett. 119, (2017)

  6. Bengio, Y.: Learning deep architectures for AI. Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. ANGUITA, D., RIDELLA, S., RIVIECCIOI, F., et al.: Quantum optimization for training support vector machines [J]. Neural Netw. 16(5/6), 763–770 (2003)

    Article  Google Scholar 

  8. Wiebe N, Kapoor A, Svore K. Quantum Algorithms for Nearest-Neighbor Methods for Supervised and Unsupervised Learning[J/OL]. Eprint arXiv, (2014). http://arxiv.org/pdf/1401.2142v2.pdf

  9. SENTIS, G., CALSAMIGLIA, J., MUNOZTAPIA, R., et al.: Quantum learning without quantum memory[J]. Sci. Rep. 2, 708 (2012)

    Article  Google Scholar 

  10. Beckmann B, Kriegel H P, Schneider R, et al. The R* -tree: an efficient and robust access method[C]//9th ACM SIGMOD International Conference on Management of Data. Atlantic City 322–331 (1990)

  11. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis [J]. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  12. JORDAN, S.P.: Fast quantum algorithm for numerical gradient estimation [J]. Phys. Rev. Lett. 95(5), 050501 (2005)

    Article  ADS  Google Scholar 

  13. Ren, D., Chen, X.: The principle and application of handwritten numeral recognition [J]. Computer Age. 3, 17–21 (2007)

    Google Scholar 

  14. GOODFELLOW, I., BENGIO, Y., COURVILLE, A.: Deep Learning [M]. IT Press, Massachusetts (2016)

    MATH  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Da Silva, A.J., De Oliveira, W.R., Ludermir, T.B.: Classical and superposed learning for quantum weightless neural networks. Neurocomputing. 75(1), 52–60 (2012)

    Article  Google Scholar 

  17. PAN, J., CAO, Y., YAO, X., et al.: Experimental realization of quantum algorithm for solving linear systems of equations[J]. Phys. Rev. A. 89(2), 1150–1154 (2013)

    Google Scholar 

  18. RUIZ-PEREZ, L., GARCIA-ESCARTIN, J.C.: Quantum arithmetic with the quantum fourier transform [J]. Quantum Inf. Process. 16(6), 152 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  20. Neven H, Denchev V S, Rose G, et al. QBoost: large scale classifier training with adiabatic quantum optimization//Proceedings of the 4th Asian Conference on Machine Learning. Singapore, 333–348 (2012)

  21. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12(5), 2027–2070 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61802033, 61751110), supported by Postdoctoral research Foundation of China (216638), and also supported by the opening project of Guangdong Provincial key Laboratory of Information Security Technology (2017B030314131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, R., Li, D. et al. Improved Handwritten Digit Recognition using Quantum K-Nearest Neighbor Algorithm. Int J Theor Phys 58, 2331–2340 (2019). https://doi.org/10.1007/s10773-019-04124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04124-5

Keywords

Navigation