Skip to main content
Log in

New Probabilistic Quantum Key Distribution Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

On the basis of entanglement swapping of Bell states, Hwang et al. proposed a probabilistic quantum key distribution (PQKD) protocol Quantum Inf. Comput. 11(7-8), 615–637 (2011). Recently, Lin et al. Quantum Inf. Comput. 14(9-10), 757–762 (2014) proposed a unitary operation attack on Hwang et al.’s PQKD. However, unlike the unitary operation attack, this work points out that a malicious participant in Hwang et al.’s PQKD protocol can manipulate the secret key. As a result, the security requirements of a PQKD protocol, i.e., fairness, cannot be satisfied in their protocol. Moreover, the same attack can also crack the fairness requirement of the existing quantum key agreement (QKA) protocols. To overcome both problems, this paper proposes a new PQKD protocol based on the order rearrangement of the transmitted photons. Furthermore, the rearrangement method can also solve the key manipulation attack in QKA protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers systems and signal processing (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  3. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum Key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

  4. Chen, P., Li, Y.S., Deng, F.G., Long, G.L.: Measuring-basis encrypted quantum key distribution with four-state systems. Commun. Theor. Phys. 47(1), 49–52 (2007)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chinese Phys. Lett. 21(11), 2097–2100 (2004)

    Article  ADS  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gao, G.: Quantum key distribution by comparing Bell states. Opt. Commun. 281(4), 876–879 (2008)

    Article  ADS  Google Scholar 

  8. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D. 61(3), 785–790 (2011)

    Article  ADS  Google Scholar 

  9. Hwang, T., Lee, K.C.: EPR Quantum key distribution protocols with potential 100% qubit efficiency. Iet Inform. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  10. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE T Depend Secure 4(1), 71–80 (2007)

    Article  Google Scholar 

  11. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

  12. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quant. Infor. 7(8), 1479–1489 (2009)

    Article  Google Scholar 

  13. Li, X.-H., Duan, X.-J., Deng, F.-G., Zhou, H.-Y.: Error-Rejecting Bennett–Brassard–Mermin Quantum key distribution protocol based on linear optics over a Collective-Noise channel. Int. J. Quantum. Inf. 08(07), 1141–1151 (2010)

    Article  Google Scholar 

  14. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

  15. Pirandola, S., Garcia-Patron, R., Braunstein, S.L., Lloyd, S.: Direct and rever se secret-key capacities of a quantum channel. Phys. Rev. Lett. 102(5), 050503 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shih, H.C., Lee, K.C., Hwang, T.: New efficient Three-Party quantum key distribution protocols. IEEE J. Sel. Top Quant. 15(6), 1602–1606 (2009)

    Article  Google Scholar 

  17. Yuan, H., Song, J., Han, L.F., Hou, K., Shi, S.H.: Improving the total efficiency of quantum key distribution by comparing Bell states. Opt. Commun. 281(18), 4803–4806 (2008)

    Article  ADS  Google Scholar 

  18. Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quant. Infor. 3(3), 555–560 (2005)

    Article  Google Scholar 

  19. Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhang, F.S., Zhou, H.Y.: Stable and deterministic quantum key distribution based on differential phase shift. Int. J. Quantum Inf. 7(4), 739–745 (2009)

    Article  Google Scholar 

  20. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  21. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  22. Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. Theory of Cryptography Proceedings 3378, 386–406 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  24. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  25. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on Quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    Article  Google Scholar 

  26. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hwang, T., Tsai, C.W., Chong, S.K.: Probabilistic quantum key distribution. Quantum Inf. Comput. 11(7-8), 615–637 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Lin, T.-H., Yang, C.-W., Hwang, T.: Unitary operation attack and the improvement on probabilistic quantum key distribution. Quantum Inf. Comput. 14(9-10), 757–762 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Science and Technology, Taiwan, R.O.C., under the Contract No. MOST 106-2218-E-039-002-MY3, and also was partially supported by China Medical University under the Contract No. CMU106-N-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CW. New Probabilistic Quantum Key Distribution Protocol. Int J Theor Phys 57, 3651–3657 (2018). https://doi.org/10.1007/s10773-018-3878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3878-0

Keywords

Navigation