Skip to main content
Log in

Influence of an External Classical Field on the Interaction Between a Field and an Atom in Presence of Intrinsic Damping

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of intrinsic damping on the interaction between a two-level atom and a multi-photon cavity field in the presence of an external classical field is studied. Under certain conditions and use of a transformation, the system is transformed to a generalized Jaynes Cummings model, with the influence of classical field included in the detuning parameter. The temporal evolution of some statistical aspects such as, the atomic inversion, the squeezing phenomena and linear entropy are obtained. In addition, we present the effects of the intrinsic damping and detuning parameters on the above mentioned quantities, for one and two photons. The entropy is used as a measure of the degree of entanglement, and consequently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  3. Moya-Cessa, H., Bužek, V., Kim, M.S., Knight, P.L.: Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  4. Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Phys. Rev. A 56, 3139 (1997)

    Article  ADS  Google Scholar 

  5. Obada, A.S., Hessian, H.A.: JOSA B 21, 1535 (2004)

    Article  ADS  Google Scholar 

  6. Xue-Qun, Y., Bin, S., Jian, Z.: Commun. Theor. Phys. 48, 63 (2007)

    Article  ADS  Google Scholar 

  7. Abdel-Aty, M.: Phys. Lett. A 372, 3719 (2008)

    Article  ADS  Google Scholar 

  8. Mohamed, A.B., Metwally, N.: Ann. Phys. 381, 137 (2017)

    Article  ADS  Google Scholar 

  9. Mohamed, A.B.A.: Eur. Phys. J. D 71(10), 261 (2017)

    Article  ADS  Google Scholar 

  10. Alqannas, H.S., Khalil, E.: Phys. A 489, 1 (2018)

    Article  MathSciNet  Google Scholar 

  11. Anwar, S.J., Ramzan, M., Khan, M.K.: Quantum Inf. Process. 16(6), 142 (2017)

    Article  ADS  Google Scholar 

  12. Abdel-Khalek, S., Zidan, N., Abdel-Aty, M.: Phys. E 44, 6 (2011)

    Article  Google Scholar 

  13. Furuichi, S., Ohya, M.: Lett. Math. Phys. 49, 279 (1999)

    Article  MathSciNet  Google Scholar 

  14. Solano, E., Agarwal, G.S., Walther, H.: Phys. Rev. Lett. 90, 027903, 4p (2003)

    Article  ADS  Google Scholar 

  15. Mohamed, A.B.A., Abdalla, M.S., Obada, A.S.F.: Eur. Phys. J. D 71(9), 223 (2017)

    Article  ADS  Google Scholar 

  16. Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 326, 2486 (2011)

    Article  ADS  Google Scholar 

  17. Khalil, E.: Int. J. Theor. Phys. 52, 1122 (2013)

    Article  Google Scholar 

  18. Moya-Cessa, H.: Phys. Rep. 432, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Shore, B.W., Knight, P.L.: J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  Google Scholar 

  20. Obada, A.S.F., Hessian, H., Mohamed, A.B.: J. Phys. B 41, 135503, 7pp (2008)

    Google Scholar 

  21. Abdalla, M.S., Khalil, E., Obada, A.S.: Ann. Phys. 322, 2554 (2007)

    Article  ADS  Google Scholar 

  22. Abdalla, M.S., Obada, A.S., Mohamed, A.B., Khalil, E.: Int. J. Theor. Phys. 53, 1325 (2014)

    Article  Google Scholar 

  23. Sánchez-Ruiz, J.: Phys. Lett. A 201, 125 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fang, M., Zhou, P., Swain, S.: J. Mod. Opt. 47, 1043 (2000)

    Article  ADS  Google Scholar 

  25. Zurek, W.H., Habib, S., Paz, J.P.: Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  26. Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J Phys. A 34, 9129 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  27. Abdel-Aty, M., Abdalla, M.S., Obada, A.S.F.: J. Opt. B 4, 134 (2002)

    Article  ADS  Google Scholar 

  28. Phoenix, S., Knight, P.: Ann. Phys. 186, 381 (1988)

    Article  ADS  Google Scholar 

  29. Phoenix, S.J.D., Knight, P.L.: Phys. Rev. A 44, 6023 (1991)

    Article  ADS  Google Scholar 

  30. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Y. Elmalky.

Appendix

Appendix

We derive the formula of the variance squeezing at the initial time. From (4) we get:

$$\begin{array}{@{}rcl@{}} \langle\hat{\sigma}_{x}\rangle &=& \langle\hat{S}_{x} \rangle\cos 2\xi+\langle\hat{S}_{z}\rangle \sin 2\xi\\ \langle\hat{\sigma}_{y}\rangle &=& \langle\hat{S}_{y}\rangle\\ \langle\hat{\sigma}_{z}\rangle &=& \langle\hat{S}_{z} \rangle\cos 2\xi-\langle\hat{ S}_{x} \rangle\sin 2\xi \end{array} $$
(A.1)

then

$$ \langle \hat{\sigma}_{x}^{2} \rangle = 1 \qquad , \qquad \langle \hat{\sigma}_{x} \rangle =\sin 2\xi \qquad \text{and}\qquad \langle \hat{\sigma}_{z} \rangle = \cos 2\xi $$
(A.2)

by using (29) then :

$$ V_{x} = \cos 2\xi -\sqrt{| \cos 2\xi|} $$
(A.3)

Similarly, we can calculate V y and determine starting point.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obada, AS.F., Khalil, E.M., Ahmed, M.M.A. et al. Influence of an External Classical Field on the Interaction Between a Field and an Atom in Presence of Intrinsic Damping. Int J Theor Phys 57, 2787–2801 (2018). https://doi.org/10.1007/s10773-018-3799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3799-y

Keywords

Navigation