Skip to main content
Log in

Quantum Entanglement and Reduced Density Matrices

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23(48), 807 (1935). https://doi.org/10.1007/BF01491891

    Article  ADS  MATH  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195–200 (1964). https://doi.org/10.1142/9789812795854_0072

    Article  MathSciNet  Google Scholar 

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5192 (2001). https://doi.org/10.1103/PhysRevLett.86.5188

    Article  ADS  Google Scholar 

  7. Bouwmeester, D., Pan, J.-W., Klausmattle, E.M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539

    Article  ADS  MATH  Google Scholar 

  8. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Propescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1125 (1998). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M.: Quantum teleportation across the Danube. Nature 430, 849 (2004). https://doi.org/10.1038/430849a

    Article  ADS  Google Scholar 

  10. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010). https://doi.org/10.1038/nphoton.2010.87

    Article  ADS  Google Scholar 

  11. Ma, X.S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012). https://doi.org/10.1038/nature11472

    Article  ADS  Google Scholar 

  12. Zha, X., Yuan, C., Zhang, Y.: Generalized criterion for a maximally multi-qubit entangled state. Laser Phys. Lett. 10(4), 1–6 (2013). https://doi.org/10.1088/1612-2011/10/4/045201

    Article  Google Scholar 

  13. Verma, V., Prakash, H.: Quantum Teleportation of Single Qubit Mixed Information State with Werner-like State as Resource. In: 12th International Conference on Fiber Optics and Photonics, pp. 1–12. Kharagpur. https://doi.org/10.1364/PHOTONICS.2014.S5A.82 (2014)

  14. Wiseman, H.M.: From Einstein’s theorem to Bell’s theorem: a history of quantum non-locality. Contemp. Phys. 47, 79–88 (2006). https://doi.org/10.1080/00107510600581011

    Article  ADS  Google Scholar 

  15. Zhao, C., Yang, G., Li, X.: Separability criterion for arbitrary multipartite pure state based on the rank of reduced density matrix. Int. J. Theor. Phys. 55(9), 3816–3826 (2016). https://doi.org/10.1007/s10773-016-3011-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuwana, L., Purwanto, A., Endarko, J.D.: Entanglement identification of arbitrary two-qubit quantum channels and the capabilities to realise quantum teleportation. Indian J. Sci. Technol. 10(43), 1–4 (2017). https://doi.org/10.17485/ijst/2017/v10i43/118480

    Article  Google Scholar 

  17. Nakahara, M., Ohmi, T.: Quantum Computing, from Linear Algebra to Physical Realization. Taylor & Francis Group, Boca Raton (2008)

    Book  MATH  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agus Purwanto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purwanto, A., Sukamto, H. & Yuwana, L. Quantum Entanglement and Reduced Density Matrices. Int J Theor Phys 57, 2426–2436 (2018). https://doi.org/10.1007/s10773-018-3764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3764-9

Keywords

Navigation