Skip to main content
Log in

Protecting Entanglement in a Common Phase Decoherence Environment using Weak Measurement and Quantum Measurement Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Protection of entanglement from disturbance of the environment is an essential task in quantum information processing. We investigate the entanglement protection of a qubit-qubit system interacting with a phase decoherence reservoir by employing the weak measurement (WM) and quantum measurement reversal (QMR). We show explicitly that the quantum entanglement can be obviously protected by means of the proper WM and QMR. In particular, we found that there is a specific initial state parameter region, the entanglement protection ratio, which is determined only by the initial state parameter and independent of the form of the spectral density of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, R.: Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Almeida, M.P., et al.: Science 316, 579 (2007)

    Article  ADS  Google Scholar 

  3. Wang, Q., Tan, M.Y., Liu, Y., Zeng, H.S.: J. Phys. B: At. Mol. Opt. Phys. 42, 125503 (2009)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Phys. Rev. Lett. 87, 07790 2 (2001)

    Article  Google Scholar 

  8. Berry, D.W., Sanders, B.C.: Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  9. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  10. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Aharonov, Y., Albert, D.Z., Vaidman, L.: Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  12. Oreshkov, O., Brun, T.A.: Phys. Rev. Lett. 95, 110409 (2005)

    Article  ADS  Google Scholar 

  13. Korotkov, A.N., Keane, K.: Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  14. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  15. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  16. Xiao, X., Li, Y.L.: Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  17. Wang, Q., Yao, C.: Commun. Theor. Phys. 61, 464 (2014)

    Article  ADS  Google Scholar 

  18. Ting, Y., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)

    Article  Google Scholar 

  19. Yao, C., Ma, Z.H., Chen, Z.H., Serafini, A.: Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  20. Ota, Y., Ashhab, S., Nori, F.: J. Phys. A: Math. Theor. 45, 415303 (2012)

    Article  Google Scholar 

  21. Pramanik, T., Majumdar, A.S.: Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. He, Z., Yao, C., Zou, J.: Phys. Rev. A 88, 044304 (2013)

    Article  ADS  Google Scholar 

  23. Man, Z.X., Xia, Y.J., An, N.B.: Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  24. Man, Z.X., Xia, Y.J., An, N.B.: Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  25. Kuang, L.M., Zeng, H.S., Tong, Z.Y.: Phys. Rev. A 99, 3815 (1999)

    Article  ADS  Google Scholar 

  26. Yuan, J.B., Kuang, L.M., Liao, J.Q.: J. Phys. B: At. Mol. Opt. Phys. 43, 165503 (2010)

    Article  ADS  Google Scholar 

  27. He, Z., Yao, C., Zou, J.: J. Phys. B: At. Mol. Opt. Phys. 47, 045505 (2014)

    Article  ADS  Google Scholar 

  28. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grants No. 61605019 and No. 61505053), the China Postdoctoral Science Foundation (Grant No. 2017M622582), the Natural Science Foundation of Hunan Province (Grants No. 2015JJ3092 and No. 2016JJ3015), the Research Foundation of Education Bureau of Hunan Province, China (Grants No. 16B177 and 15C0937), and the School Foundation from the Hunan University of Arts and Science (Grants No. 14YB01 and 14ZD01), the Fund from the Key Laboratory of Photoelectric Information Integration and Optical Manufacturing Technology of Hunan Province, China, and the Construction Program of the Key Discipline in Hunan University of Arts and Science (Optics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tang, JS., He, Z. et al. Protecting Entanglement in a Common Phase Decoherence Environment using Weak Measurement and Quantum Measurement Reversal. Int J Theor Phys 57, 2365–2372 (2018). https://doi.org/10.1007/s10773-018-3759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3759-6

Keywords

Navigation