Skip to main content
Log in

Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the preservation of quantum Fisher information (QFI) of a single-qubit system coupled to a common zero temperature reservoir through the addition of noninteracting qubits. The results show that, the QFI is completely protected in both Markovian and non-Markovian regimes by increasing the number of additional qubits. Besides, the phenomena of QFI display monotonic decay or non-monotonic with revival oscillations depending on the number of additional qubits N − 1 in a common dissipative reservoir. If N < N c (a critical number depending on the reservoirs parameters), the behavior of QFI with monotonic decay occurs. However, if NN c , QFI exhibits non-monotonic behavior with revival oscillations. Moreover, we extend this model to investigate the effect of additional qubits and the initial conditions of the system on the geometric phase (GP). It is found that, the robustness of GP against the dissipative reservoir has been demonstrated by increasing gradually the number of additional qubits N − 1. Besides, the GP is sensitive to the initial parameter 𝜃, and possesses symmetric in a range regime [0,2π].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fisher, R. A.: Proc. Cambridge Phil. Soc. 22, 900 (1929)

    Google Scholar 

  2. Cramer H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  3. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  4. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  5. Li, N., Luo, S.L.: Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  6. Lu, X.M., Wang X.G., Sun C.P.: Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  7. Luo, S.L.: Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  8. Watanabe, Y., Sagawa, T., Ueda, M.: Phys. Rev. A 84, 042121 (2011)

    Article  ADS  Google Scholar 

  9. Tan, Q.S., Huang, Y.X., Kuang, L.M., Wang, X.G.: Phys. Rev. A 89, 063604 (2014)

    Article  ADS  Google Scholar 

  10. Tan, Q.S., Huang, Y.X., Yin, X.L., Kuang, L.M., Wang, X.G.: Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  11. Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Phys. Rev. A 88, 043832 (2013)

    Article  ADS  Google Scholar 

  12. Li, Y.L., Xiao, X., Yao, Y.: Phys. Rev. 91, 052105 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Abdel-Khalek, S.: Ann. Phys. 351, 0952–959 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Berrada, K.: Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  15. Berrada, K.: J. Opt. Soc. Am. B 32, 571 (2015)

    Article  ADS  Google Scholar 

  16. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  17. He, Z., Yao, C.M.: Chin. Phys. B 23, 110601 (2014)

    Article  ADS  Google Scholar 

  18. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  19. Ba An, N., Kim, J., Kim, K.: Phys. Rev. A 84, 022329 (2011)

    Article  ADS  Google Scholar 

  20. Ba An, N.: Phys. Lett. A 337, 2520 (2013)

    Article  Google Scholar 

  21. Flores, M. M., Galapon, E. A.: Ann Phys. 354, 2130 (2015)

    Article  Google Scholar 

  22. Behzadi, N., Ahansaz, B., Ektesabi, A., Faizi, E.: arXiv:1607.06507v2 [quant-ph] (2017)

  23. Behzadi, N., Ahansaz, B., Ektesabi, A., Faizi, E.: arXiv:1702.037932v2 [quant-ph] (2017)

  24. Berry, M.V.: Proc. R. Soc. London A 329, 45 (1984)

    Article  ADS  Google Scholar 

  25. Tomita, A., Chiao, R. Y.: Phys. Rev. Lett. 57, 937 (1986)

    Article  ADS  Google Scholar 

  26. Leek, P. J., Fink, J. M., Blais, A., Bianchetti, R., Göppl, M., Gambetta, J. M., Schuster, D. I., Frunzio, L., Schoelkopf, R.J., Wallraff, A.: Science 318, 1889 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Chen, H., Hu, M., Chen, J., Du, J.: Phys. Rev. A 80, 054101 (2009)

    Article  ADS  Google Scholar 

  28. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Nature, (London) 403, 869 (2000)

    Article  ADS  Google Scholar 

  29. Yi, X.X., Wang, W.: Phys. Rev. A 75, 032103 (2007)

    Article  ADS  Google Scholar 

  30. Zhang, X., Zhang, A., Li, L.: Phys. Lett. A 376, 2090 (2012)

    Article  ADS  Google Scholar 

  31. Aharonov, Y., Anandan, J.: Phys. Rev. Lett. 58, 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  32. Samuel, J., Bhandari, R.: Phys. Rev. Lett. 60, 2339 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  33. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Phys. Rev. Lett. 93, 080405 (2004)

    Article  ADS  Google Scholar 

  34. Sjoqvist, E., Pati, A. K., Ekert, A., Anandan, J. S., Ericsson, M., Oi, D. K. L., Vedral, V.: Phys. Rev. Lett. 85, 2845 (2000)

    Article  ADS  Google Scholar 

  35. Uhlmann, A.: Rep. Math. Phys. 24, 229 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  36. Singh, K., Tong, D.M., Basu, K., Chen, J.L., Du, J.F.: Phys. Rev. A 67, 032106 (2003)

    Article  ADS  Google Scholar 

  37. Ericsson, M., et al.: Phys. Rev. A 67, 020101 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Peixoto de Faria, J.G., et al.: Europhys. Lett. 62, 782 (2003)

    Article  ADS  Google Scholar 

  39. Tong, D.M., Sjöqvist, E., Kwek, L.C., Oh, C.H., Ericsson, M.: Phys. Rev. A 68, 022106 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  40. Williamson, M. S., Vedral, V.: Phys. Rev. A 76, 032115 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  41. Niu, C.W., Xu, G.F., Liu, L.J., Kang, L., Tong, D.M., Kwek, L.C.: Phys. Rev. A 81, 012116 (2010)

    Article  ADS  Google Scholar 

  42. Yi, X.X., Tong, D.M., Wang, L.C., Kwek, L.C., Oh, C.H.: Phys. Rev. A 73, 052103 (2006)

    Article  ADS  Google Scholar 

  43. Chen, J.J., An, J.H., Tong, Q.J., Luo, H.G., Oh, C.H.: Phys. Rev. A 81, 022120 (2010)

    Article  ADS  Google Scholar 

  44. Li, J. G., Zou, J., Shao, B.: Phys. Rev. A 81, 062124 (2010)

    Article  ADS  Google Scholar 

  45. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systes. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  46. Sun, Z., Ma, J., Lu, X., Wang, X.G.: Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  47. Dorner, U., Demkowicz, R., Smith, B.J., Lundeen, J.S., Wasilewski, W., Banaszek, K., Walmsley, A.: Phys. Rev. Lett. 102, 040403 (2009)

    Article  ADS  Google Scholar 

  48. Man, Z.X., Ba An, N., Xia, Y.J.: Phys. Rev. A 90, 062104 (2014)

    Article  ADS  Google Scholar 

  49. Wang, G.Y., Guo, Y.N., Zeng, K.: Chin. Phys. B 24, 114201 (2015)

    Article  ADS  Google Scholar 

  50. Huang, X.L., Yi, X.X.: Europhys. Lett. 82, 50001 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Start-up Funds for Talent Introduction and Scientific Research of Changsha University (Grant Nos.SF1504 and SF1602), the Scientific Research Project of Hunan Province Department of Education (Grant Nos.16C0134 and 17C0133), the Natural Science Foundation of Hunan Province (Grant Nos.2017JJ3346 and 14JJ2134), Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1403) and the Project of Science and Technology Plan of Changsha (ZD1601071 and K1705022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Q. L. Tian or K. Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y.N., Tian, Q.L., Mo, Y.F. et al. Preservation of Quantum Fisher Information and Geometric Phase of a Single Qubit System in a Dissipative Reservoir Through the Addition of Qubits. Int J Theor Phys 57, 1013–1023 (2018). https://doi.org/10.1007/s10773-017-3634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3634-x

Keywords

Mathematics Subject Classification (2010)

Navigation