Skip to main content
Log in

Quark-Antiquark Bound State in Three-Dimensional Approach

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we develop a three-dimensional approach for describing meson bound states based on the momentum-helicity basis. To this end, we formulate the relativistic form of Lippmann-Schwinger equation in the momentum-helicity basis which leads to two sets of integral equations. Then we have solved these integral equations by inserting a spin dependent quark-antiquark potential model numerically as eigenvalue equations. Finally, we obtain the mass spectrum of the light mesons and compare these results with the results which are obtained in the partial wave representation and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elster, C., Thomas, J.H., Glöckle, W.: Few-Body Syst. 24, 55 (1998)

    Article  ADS  Google Scholar 

  2. Schadow, W., Elster, C., Glöckle, W.: Few-Body Syst. 28, 15 (2000)

    Article  ADS  Google Scholar 

  3. Liu, H., Elster, C., Glöckle, W.: Few-Body Syst. 33, 241 (2003)

    Article  ADS  Google Scholar 

  4. Elster, C., Schadow, W., Nogga, A., Glöckle, W.: Few-Body Syst. 27, 83 (1999)

    Article  ADS  Google Scholar 

  5. Liu, H., Elster, C., Glöckle, W.: Phys. Rev. C 72, 054003 (2005)

    Article  ADS  Google Scholar 

  6. Lin, T., Elster, C., Polyzou, W.N., Glöckle, W.: Phys. Lett. B 660, 345 (2008)

    Article  ADS  Google Scholar 

  7. Lin, T., Elster, C., Polyzou, W.N., Witala, H., Glöckle, W.: Phys. Rev. C 78, 024002 (2008)

    Article  ADS  Google Scholar 

  8. Lin, T., Elster, C., Polyzou, W.N., Glöckle, W.: Phys. Rev. C 76, 014010 (2007)

    Article  ADS  Google Scholar 

  9. Hadizadeh, M.R., Bayegan, S.: Few-Body Syst. 40, 171 (2007)

    Article  ADS  Google Scholar 

  10. Hadizadeh, M.R., Bayegan, S.: Eur. Phys. J. A 36, 201 (2008)

    Article  ADS  Google Scholar 

  11. Fachruddin, I., Elster, C., Glöckle, W.: Phys. Rev. C 62, 044002 (2000)

    Article  ADS  Google Scholar 

  12. Fachruddin, I., Elster, C., Glöckle, W.: Phys. Rev. C 63, 054003 (2001)

    Article  ADS  Google Scholar 

  13. Golak, J., Glöckle, W., Skibinski, R., Witala, H., Rozpedzik, D., Topolnicki, K., Fachruddin, I., Elster, C., Nogga, A.: Phys. Rev. C 81, 034006 (2010)

    Article  ADS  Google Scholar 

  14. Bayegan, S., Shalchi, M.A., Hadizadeh, M.R.: Phys. Rev. C. 79, 057001 (2009)

    Article  ADS  Google Scholar 

  15. Bayegan, S., Hadizadeh, M.R., Harzchi, M.: Phys. Rev. C 77, 064005 (2008)

    Article  ADS  Google Scholar 

  16. Bayegan, S., Hadizadeh, M.R., Harzchi, M.: Few-Body Syst. 44, 65 (2008)

    Article  ADS  Google Scholar 

  17. Fachruddin, I., Glöckle, W., Elster, C., Nogga, A.: Phys. Rev. C 69, 064002 (2004)

    Article  ADS  Google Scholar 

  18. Fachruddin, I., Elster, C., Glöckle, W.: Phys. Rev. C 68, 054003 (2003)

    Article  ADS  Google Scholar 

  19. Radin, M., Ghasemi, H.: Nucl. Phys. A 945, 269 (2016)

    Article  ADS  Google Scholar 

  20. Harzchi, M., Bayegan, S.: Eur. Phys. J. A 46, 271 (2010)

    Article  ADS  Google Scholar 

  21. Hadizadeh, M.R., Tomio, L., Bayegan, S.: Phys. Rev. C 83, 054004 (2011)

    Article  ADS  Google Scholar 

  22. Bayegan, S., Hadizadeh, M.R., Gloeckle, W.: Prog. Theor. Phys. 120, 887 (2008)

    Article  ADS  Google Scholar 

  23. Glöckle, W., Fachruddin, I., Elster, C., Golak, J., Skibinski, R., Witala, H.: Eur. Phys. J. A 43, 339 (2010)

    Article  ADS  Google Scholar 

  24. Radin, M., Tazimi, N.: Phys. Rev. D 90, 085020 (2014)

    Article  ADS  Google Scholar 

  25. Radin, M.: Adv. High Energy Phys. 2017, 5 (2017)

    Article  Google Scholar 

  26. Jean, H.-C., Robson, D., Williams, A.G.: Phys. Rev. D 50, 5873 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Radin.

Appendix A: Connection to the Partial Wave Representation

Appendix A: Connection to the Partial Wave Representation

In this section we make a connection between the two-body wave function components in the momentum-helicity basis and the partial wave projected components of wave function. For this purpose, we insert the completeness relation of the partial wave basis in the momentum-helicity representation of the wave function and we obtain:

$$\begin{array}{@{}rcl@{}} \langle\textbf{p};\hat{\textbf{p}}S\Lambda|\Phi_{j}^{M_{j}}\rangle&=&\sum\limits_{lS^{\prime}M^{\prime}_{j}}\int_{0}^{\infty} dp^{\prime}p^{\prime 2}\langle\textbf{p};\hat{\textbf{p}}S\Lambda|p^{\prime}(l S^{\prime})j M^{\prime}_{j}\rangle\langle p^{\prime}(l S^{\prime})j M^{\prime}_{j}|\Phi_{j}^{M_{j}}\rangle. \end{array} $$
(3.8)

The scalar product of the the momentum-helicity and the partial wave basis states is given by [12]:

$$\begin{array}{@{}rcl@{}} \langle\textbf{p};\hat{\textbf{p}}S\Lambda|p^{\prime}\,(l S^{\prime})j M^{\prime}_{j}\rangle&\!=\!&\sqrt{\frac{2l + 1}{4\pi}}\,\frac{\delta(p\!-\!p^{\prime})}{pp^{\prime}}\,\delta_{SS^{\prime}}\,e^{iM^{\prime}_{j}\varphi} \,d^{j}_{M^{\prime}_{j}\Lambda}(\theta)\,C(lSj;0\Lambda\Lambda). \end{array} $$
(3.9)

Inserting (3.9) into (3.8) yields:

$$\begin{array}{@{}rcl@{}} \langle\textbf{p};\hat{\textbf{p}}S\Lambda|\Phi_{j}^{M_{j}}\rangle&=&\,e^{iM_{j}\varphi}\,d^{j}_{M_{j}\Lambda}(\theta) \sum\limits_{l}\sqrt{\frac{2l + 1}{4\pi}}\,C(lSj;0\Lambda\Lambda)\,\mathrm{\Psi}_{lSj}(p), \end{array} $$
(3.10)

where we use \(\langle p\,(l S)j M^{\prime }_{j}|\Phi _{j}^{M_{j}}\rangle = \delta _{M^{\prime }_{j}M_{j}}\mathrm {\Psi }_{lSj}(p)\). Ψ l S j (p) are the partial wave components of wave function. In comparison with (2.6) and (2.12), (3.10) can be rewritten as:

$$\begin{array}{@{}rcl@{}} &&\Phi^{\Lambda M_{j}}_{jS}(p,\theta)=d^{j}_{M_{j}\Lambda}(\theta)\sum\limits_{l}\sqrt{\frac{2l + 1}{4\pi}}\,C(lSj;0 \Lambda\Lambda)\, \mathrm{\Psi}_{lSj}(p), \end{array} $$
(3.11)
$$\begin{array}{@{}rcl@{}} &&\Phi^{\Lambda}_{jS}(p)=\sum\limits_{l}\sqrt{\frac{2l + 1}{4\pi}}\,C(lSj;0\Lambda\Lambda)\,\mathrm{\Psi}_{lSj}(p), \end{array} $$
(3.12)

respectively. These two equations connect the partial wave and the momentum-helicity representation of wave function to each other. The inverse of these equations can be obtained as bellow. We insert the completeness relation of the momentum-helicity basis in the partial wave representation of wave function and we obtain:

$$\begin{array}{@{}rcl@{}} \langle p\,(l S)j M_{j}|\Phi_{j}^{M_{j}}\rangle&=&\sum\limits_{S^{\prime}\Lambda}\int d\textbf{p}^{\prime}\langle p\,(l S)j M_{j}|\textbf{p}^{\prime};\hat{\textbf{p}}^{\prime}S^{\prime}\Lambda\rangle\langle\textbf{p}^{\prime}; \hat{\textbf{p}}^{\prime}S^{\prime}\Lambda|\Phi_{j}^{M_{j}}\rangle. \end{array} $$
(3.13)

By inserting (3.9) and integration over p , we have

$$\begin{array}{@{}rcl@{}} \mathrm{\Psi}_{lSj}(p)&\!=\!&2\pi\sqrt{\frac{2l\!+\!1}{4\pi}}\sum\limits_{\Lambda}\,C(lSj;0\Lambda\Lambda) \int_{-1}^{1} d \cos\theta^{\prime}\,d^{j}_{M_{j}\Lambda}(\theta^{\prime})\Phi^{\Lambda M_{j}}_{jS}(p,\theta^{\prime}). \end{array} $$
(3.14)

From (2.6) and (2.12), we can explicitly show

$$\begin{array}{@{}rcl@{}} \Phi^{\Lambda M_{j}}_{jS}(p,\theta^{\prime})&=&d^{j}_{M_{j}\Lambda}(\theta^{\prime}) \Phi^{\Lambda}_{jS}(p). \end{array} $$
(3.15)

Thus, (3.14) can be written as

$$\begin{array}{@{}rcl@{}} \mathrm{\Psi}_{lSj}(p)&=&\frac{\sqrt{4\pi(2l + 1)}}{2j + 1}\sum\limits_{\Lambda}\,C(lSj;0\Lambda\Lambda) \Phi^{\Lambda}_{jS}(p), \end{array} $$
(3.16)

where we have used the orthogonality relation for the rotation d-matrices

$$\begin{array}{@{}rcl@{}} \int_{-1}^{1}d \cos\theta^{\prime}\,d^{j}_{M_{j}\Lambda}(\theta^{\prime})\,d^{j}_{M_{j}\Lambda}(\theta^{\prime})= \frac{2}{2j + 1}. \end{array} $$
(3.17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radin, M. Quark-Antiquark Bound State in Three-Dimensional Approach. Int J Theor Phys 57, 877–886 (2018). https://doi.org/10.1007/s10773-017-3620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3620-3

Keywords

Navigation