Skip to main content
Log in

Controlled Bidirectional Hybrid of Remote State Preparation and Quantum Teleportation via Seven-Qubit Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new protocol of implementing four-party controlled joint remote state preparation and meanwhile realizing controlled quantum teleportation via a seven-qubit entangled state. That is to say, Alice wants to teleport an arbitrary single-qubit state to Bob and Bob wants to remotely prepare a known state for Alice via the control of supervisors Fred and David. Compared with previous studies for the schemes of solely bidirectional quantum teleportation and remote state preparation, the new protocol is a kind of hybrid approach of information communication which makes the quantum channel multipurpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen, H.X., Zhang, X., Zhu, D.Y., Yang, C., Jiang, T., Zheng, H.B., Zhang, Y.P.: Phys. Rev. A 90, 043846 (2014)

    Article  ADS  Google Scholar 

  2. Li, C.B., Jiang, Z.H., Zhang, Y.Q., Zhang, Z.Y., Wen, F., Chen, H.X., Zhang, Y.P., Xiao, M.: Phys. Rev. Appl. 7, 014023 (2017)

    Article  ADS  Google Scholar 

  3. Garuma, A., Irfan, A., Wang, X.X., Liu, Z.C., Wang, H.X., Zhang, Y.P.: Phys. Rev. A 94, 023849 (2016)

    Article  ADS  Google Scholar 

  4. Zheng, H.B., Zhang, X., Zhang, Z.Y., Tian, Y.L., Chen, H., Li, C.B., Zhang, Y.P.: Sci. Rep. 3, 1885 (2013)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, B.: Quantum cryptography: Public key distribution and coin toss-ing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Pro-cessing, Bangalore, India, pp 175–179. IEEE, New York (1984)

  6. Ekert, A.K.: Quantum cryptography based on Bells theorem[J]. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem[J]. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution[J]. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  9. Hwang, W.Y.: Quantum key distribution with high loss: Toward global secure communication[J]. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Phys. Rev. A 70(1), 012311 (2004)

    Article  ADS  Google Scholar 

  11. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  12. Lo, H.K., Ma. X., Chen, K.: Decoy state quantum key distribution[J]. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  13. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel[J]. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  14. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  15. Hillery, M., Buzek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1990)

    Article  ADS  Google Scholar 

  16. Karlsson, A., Koashi, M., Imoto, N.: Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  17. Cleve, R., Gottesman, D., Lo, H.K.: Phys. Rev. Lett 83, 648 (1999)

    Article  ADS  Google Scholar 

  18. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  19. Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing[J]. Phys. Rev. Lett 92(17), 177903 (2004)

    Article  ADS  Google Scholar 

  20. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing[J]. J. Phys. A Math. Gen. 39(45), 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  22. Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. Int. J. Theor. Phys. 53 (8), 2697–2707 (2014)

    Article  MATH  Google Scholar 

  23. Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  24. Li, Y., Li, X., Sang, M., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. Int. J. Theor. Phys. 52(10), 3790–3796 (2013)

    Article  Google Scholar 

  26. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state[J]. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation[J]. Int. J. Theor. Phys. 54(5), 1711–1719 (2015)

    Article  MATH  Google Scholar 

  28. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  29. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  30. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  31. Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat.Sci.: Nanosci. Nanotechnol 5, 015003 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 10902083) and Natural Science Foundation of Shannxi provincial of China (No. 2009JM1007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zha, XW. & Yang, YQ. Controlled Bidirectional Hybrid of Remote State Preparation and Quantum Teleportation via Seven-Qubit Entangled State. Int J Theor Phys 57, 28–35 (2018). https://doi.org/10.1007/s10773-017-3537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3537-x

Keywords

Navigation