Skip to main content
Log in

Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nielsen, M., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Grobe, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares 38th International Symposium on Multiple Valued Logic, 2008. ISMVL 2008, pp. 214–219. IEEE (2008)

  5. Weste, N.H.E., Harris, D.: CMOS VLSI Design, A Circuits And Systems Perspective. Published by Person Education, 3rd edn., pp. 715–738. Boston, Addison Wesley (2005)

  6. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Dordrecht, Heidelberg (2010)

    Book  MATH  Google Scholar 

  7. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Quantum logic synthesis by symbolic reachability analysis Proceedings of the 41st Annual Design Automation Conference, pp. 838–841. ACM (2004)

  8. Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process 1–23 (2012)

  9. Arabzadeh, M., Zamani, M., Sedighi, M., Saeedi, M.: Logical-depth-oriented reversible logic synthesis International Workshop on Logic and Synthesis (2011)

  10. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. arXiv:1206.0758 (2012)

  11. Kerntopf, P., Perkowski, M.A., Khan, M.H.A.: On universality of general reversible multiple valued logic gates Proceedings of the 34th IEEE International Symposium on Multiple Valued Logic, pp. 68–73 (2004)

  12. Smolin, J.A., Divincenzo, D.P.: Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys. Rev. A 53, 2855–2856 (1996)

    Article  ADS  Google Scholar 

  13. Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 23(11), 1497–1509 (2004)

    Article  Google Scholar 

  14. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Oskin, M., Chong, F.T., Chuang, I.L.: A practical architecture for reliable quantum computers. Computer 35, 79–87 (2002)

    Article  Google Scholar 

  16. Morrison, M.A.: Design of a reversible ALU based on novel reversible logic structures. PhD thesis, Graduate School Theses and Dissertations, University of South Florida (2012)

  17. Morrison, M., Ranganathan, N.: Design of a reversible ALU based on novel programmable reversible logic gate structures 2011 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.126–131 (2011)

  18. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 382002 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Safari, P., Haghparast, M., Azari, A., Branch, A.: A design of fault tolerant reversible arithmetic logic unit. Life Science J. 3, 9 (2012)

    Google Scholar 

  20. Dixit, A., Kapse, V.: Arithmetic & logic unit (ALU) design using reversible control unit. Int. J. Eng. Innov. Technol. (IJEIT) 1(6), 55–60 (2012). ISSN:2277-3754

    Google Scholar 

  21. Syamala, Y., Tilak, A.V.N.: Reversible arithmetic logic unit 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 5. IEEE (2011)

  22. Morrison, M., Lewandowski, M., Meana, R., Ranganathan, N.: Design of a novel reversible ALU using an enhanced carry look-ahead adder 2011 11Th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1436–1440. IEEE (2011)

  23. Guan, Z., Li, W., Ding, W., Hang, Y., Ni, L.: An arithmetic logic unit design based on reversible logic gates 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (Pacrim), pp. 925–931. IEEE (2011)

  24. Mamatag, S., Das, B., Rahaman, A.: An optimized realization of ALU for 12-operations by using a control unit of reversible gates. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(1), 496–502 (2014). ISSN: 2277 128X A

    Google Scholar 

  25. Zhou, R., Li, Y., Zhang, M., Hu, B.: Novel design for reversible arithmetic logic unit. Int. J. Theor. Phys. 1–15 (2014)

  26. Feynman, R.: Quantum mechanical computers. Optics, News 11, 11–20 (1985)

    Article  Google Scholar 

  27. Toffoli, T.: Reversible computing. Technical Memo MIT/LCS/TM-151, MIT Laboratory for Computer Science (February) (1980)

  28. Fredkin, E., Toffoli. T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Babu, H.M.H., Islam, M.R., Chowdhury, A.R., Chowdhury, S.M.A.: Reversible logic synthesis for minimization of full-adder circuit IEEE Conference on Digital and System Design, pp. 50 54 (2003)

  30. Thapliyal, H., Srinivas, M.B.: A novel reversible TSG gate and its application for designing reversible carry look ahead adder and other adder architectures 10th Asia-Pacific Computer Systems Architecture Conference (2005)

  31. Zhou, R.G., Li, Y.C., Zhang, M.Q.: Novel designs for fault tolerant reversible binary coded decimal adders International Journal of Electronics, pp. 1–21 (Ahead-Of-Print) (2013)

  32. Krishnaveni, D., Geetha, P.M.: A novel design of reversible serial and parallel adder/subtractor. Int. J. Eng. Sci. Technol. (IJEST) 3(3), 2280–2288 (2010)

    Google Scholar 

  33. Biswas, A.K., Hasan, Md.M., Chowdhury, A.R.: Hafiz Md.Hasan Babu, efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39, 1693–1703 (2008)

    Article  Google Scholar 

  34. Bhagyalakshmi, H.R., Venkatesha, M.K.: An improved design of a multiplier using reversible logic gates. Int. J. Eng. Sci. Technol. 2(8), 3838–3845 (2010)

    Google Scholar 

  35. Majid, H., Bolhassani, A.: Optimization approaches for designing quantum reversible arithmetic logic unit. Int. J. Theor. Phys. 55, 1423–1437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimani Ayyoub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyoub, S., Achour, B. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit. Int J Theor Phys 56, 2686–2696 (2017). https://doi.org/10.1007/s10773-017-3426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3426-3

Keywords

Navigation