Skip to main content
Log in

Dynamics in the Decompositions Approach to Quantum Mechanics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In Harding (Trans. Amer. Math. Soc. 348(5), 1839–1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger’s equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. IEEE Comput. Soc. Press, Los Alamitos, CA (2004)

    Book  MATH  Google Scholar 

  2. Bingham, N.H., Ostaszewski, A.J.: Normed versus topological groups: dichotomy and duality. Dissertationes Math. (Rozprawy Mat.) 472, 138 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Graduate Texts in Mathematics (78). Springer (1981)

  4. Chiara, M.D., Giuntini, R., Greechie, R.J.: Reasoning in Quantum Theory Sharp and Unsharp Quantum Logics Trends in Logic, vol. 22. Kluwer, Dordrecht/Boston/London (2004)

  5. Gogioso, S.: Categorical quantum mechanics for Schrödinger’s equation, arXiv:1501.06489v2

  6. Grillet, P.A.: Abstract Algebra. Graduate Texts in Mathematics. Springer (2007)

  7. Hannan, T., Harding, J.: Automorphisms of decompositions, to appear in Math. Slovaka

  8. Harding, J.: Decompositions in quantum logic. Trans. Amer. Math. Soc. 348(5), 1839–1862 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harding, J.: Regularity in quantum logic. Int. J. Theor. Phys. 37(4), 1173–1212 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Harding, J.: Axioms of an experimental system. Int. J. Theor. Phys. 38(6), 1643–1675 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Harding, J.: Orthomodularity of decompositions in a categorical setting. Int. J. Theor. Phys. 45(6), 1117–1127 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Harding, J.: A link between quantum logic and categorical quantum mechanics. Int. J. Theor. Phys. 48(3), 769–802 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harding, J.: Wigner’s theorem for an infinite set. arXiv:1604.06973

  14. Harding, J., Yang, T.: Sections in orthomodular structures of decompositions, to appear in The Houston J. Math.

  15. Harding, J., Yang, T.: The logic of bundles, to appear in Int. J. Theor. Phys.

  16. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, Elsevier (1978)

  17. Herrlich, H., Strecker, G.: Category Theory; an Introduction, Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon, Boston (1973)

  18. Joyal, A., Street, R.: An Introduction to Tanaka Duality and Quantum Groups, Lecture Notes in Math 1488, pp 411–492. Springer, Berlin (1991)

  19. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. 1. Elementary Theory, Academic Press, New York (1983)

  20. Mackey, G.W.: The Mathematical Foundations of Quantum Mechanics. A Lecture-Note Volume by W. A. Benjamin, Inc., New York-Amsterdam (1963)

  21. McKenzie, R., McNulty, G., Taylor, W.: Algebras, Lattices Varieties, vol. I. Wadsworth & Brooks/Cole, Monterey (1987)

  22. Mitchell, B.: Theory of Categories. Academic Press, New York (1965)

    MATH  Google Scholar 

  23. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics Fundamental Theories of Physics, vol. 44. Kluwer Academic Publishers Group, Dordrecht (1991)

  24. Singer, S.F.: Linearity, Symmetry, and Prediction in the Hydrogen Atom. Springer (2005)

  25. Street, R.: Monoidal categories for the combinatorics of group representations, electronically available notes

  26. Tinkham, M.: Group Theory and Quantum Mechanics. Dover (2003)

  27. Varadarajan, V.S.: Geometry of Quantum Theory, 2nd edn. Springer (1985)

  28. Wigner, E.P.: Group Theory and its Applications to the Quantum Mechanics of the Atomic Spectra. Academic Press (1959)

Download references

Acknowledgements

The author gratefully acknowledges support of the Foundational Questions Institute grant 2015-144075. The author also thanks Martin Bohata for discussions, and an anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harding, J. Dynamics in the Decompositions Approach to Quantum Mechanics. Int J Theor Phys 56, 3971–3990 (2017). https://doi.org/10.1007/s10773-017-3408-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3408-5

Keywords

Navigation