Skip to main content
Log in

A Quantum-inspired Version of the Classification Problem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We address the problem of binary classification by using a quantum version of the Nearest Mean Classifier (NMC). Our proposal is indeed an advanced version of previous one (see Sergioli et al. 2017 that i) is able to be naturally generalized to arbitrary number of features and ii) exhibits better performances with respect to the classical NMC for several datasets. Further, we show that the quantum version of NMC is not invariant under rescaling. This allows us to introduce a free parameter, i.e. the rescaling factor, that could be useful to get a further improvement of the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For the sake of the clarity regarding the indexes, we accord to use superscript index to indicate the different components of the vector and subscript to indicate different vectors.

References

  1. Aerts, D., Sozzo, S.: Quantum structure in cognition: Why and how concepts are entangled. Lect. Notes Comput. Sci 7052, 116–127 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aerts, D., Sozzo, S., Gabora, L., Veloz, T.: Quantum Structure in Cognition: Fundamentals and Applications. In: Privman, V., Ovchinnikov, V. (eds.) ICQNM 2011: The Fifth International Conference on Quantum, Nano and Micro Technologies (2011)

    Google Scholar 

  3. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world Conference of the Canadian Society for Computational Studies of Intelligence Springer Berlin Heidelberg (2006)

    Google Scholar 

  4. Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: Holistic logical arguments in quantum computation. Mathematica Slovaca 2, 66 (2016)

    MATH  MathSciNet  Google Scholar 

  5. Dalla Chiara, M.L., Giuntini, R., Leporini, R., Negri, E., Sergioli, G.: Quantum information, cognition and music. Front. Psychol., 6–1583 (2015)

  6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, 2nd edition (2000)

  7. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19(6), 12–32 (2002)

    Article  ADS  Google Scholar 

  9. Gambs, S.: Quantum classification, arXiv:0809.0444v2 [quant-ph] (2008)

  10. Helstrom, C.W.: Quantum Detection and Estimation Theory, Academic Press (1976)

  11. Holik, F., Sergioli, G., Freytes, H., Plastino, A.: Pattern Recognition in non-Kolmogorovian Structures Foundations of Science (2017)

  12. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 [quant-ph] (2013)

  13. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  14. Manju, A., Nigam, M.J.: Applications of quantum inspired computational intelligence: a survey. Artif. Intell. Rev. 42(1), 79–156 (2014)

    Article  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information - 10th Anniversary Edition. Cambridge university press, Cambridge (2010)

    Book  MATH  Google Scholar 

  16. Piotrowski, E.W., Sladkowski, J.: An invitation to quantum game theory. Int. J. Theor. Phys. 42(5), 1089–1099 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. QP-PQ: Quantum Probability and White Noise Analysis: Volume 21. Quantum Bio-Informatics II, From Quantum Information to Bio-Informatics, World Scientific (2008)

  18. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2014)

    Article  ADS  MATH  Google Scholar 

  19. Schuld, M., Sinayskiy, I., Petruccione, F.: The quest for a Quantum Neural Network. Quantum Inf. Process 13(11), 2567–2586 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sergioli, G., Santucci, E., Didaci, L., Miszczak, J.A., Giuntini, R.: A quantum inspired version of the NMC classifier. Soft Computing (forthcoming) (2017)

  21. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2) (2014). arXiv:1409.3097

  22. Wittek, P.: Quantum machine learning: What quantum computing means to data mining academic press (2014)

Download references

Acknowledgements

This work is supported by the Sardinia Region Project ”Modeling the uncertainty: quantum theory and imaging processing”, LR 7/8/2007. RAS CRP-59872 and by the Firb Project ”Structures and Dynamics of Knowledge and Cognition” [F21J12000140001]. GMB acknowledges support from CONICET and UNLP (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sergioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergioli, G., Bosyk, G.M., Santucci, E. et al. A Quantum-inspired Version of the Classification Problem. Int J Theor Phys 56, 3880–3888 (2017). https://doi.org/10.1007/s10773-017-3371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3371-1

Keywords

Navigation