Skip to main content
Log in

Topological Basis Method for Four-Qubit Spin-\(\frac {1}{2}\) XXZ Heisenberg Chain with Dzyaloshinskii-Moriya Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the four-qubit spin-\(\frac {1}{2}\) XXZ Heisenberg chain with Dzyaloshinskii-Moriya interaction by topological basis method, and research the relationship between the topological basis states and the ground states. In order to study the Hamiltonian system beyond XXZ model, we introduce two Temperley-Lieb algebra generators and two other generalized generators. Then we investigate the relationship between topological basis and Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction. The results show that the ground state of this model falls on the topological basis state for anti-ferromagnetic case and gapless phase case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temperley, H.N.V., Lieb, E.H.: Mathematical and Physical Sciences. In: Proceedings R. Soc. Lond. A, vol. 322, p. 251 (1971)

  2. Wadati, M., Deguchi, T., Akutsu, Y.: Exactly solvable models and knot theory. Phys. Rep. 180, 247 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Klumper, A.: New results for q-state vertex models and the pure Biquadratic spin-1 Hamiltonian. Europhys. Lett. 9, 815–820 (1989)

    Article  ADS  Google Scholar 

  4. Kulish, P.P.: On spin systems related to the Temperley–Lieb algebra. J. Phys. A: Math. Gen. 36, 489–493 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Owczarek, A.L., Baxter, R.J.: A class of interaction-round-a-face models and its equivalence with an ice-type model. J. Stat. Phys. 49, 1093 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pasquier, V.: Two-dimensional critical systems labelled by Dynkin diagrams. Nucl. Phys. B. 285, 162–172 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pasquier, V.: Lattice derivation of modular invariant partition functions on the torus. J. Phys. A. 20, 1229 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Tian, L.J., Zhang, H.B., Jin, S., Xue, K.: Y(sl(2)) algebra application in extended hydrogen atom and monopole models. Commun. Theor. Phys. 41, 641 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, G.C., Sun, C.F, Wu, C.F., Liu, B., Zhang, Y., Xue, K.: Multipartite d-level GHZ bases associated with generalized braid matrices. Europhys. Lett. 108(1), 10001 (2014)

    Article  ADS  Google Scholar 

  10. Yang, C., Ge, M.L.: Braid Group, Knot Theory and Statistical Mechanics II. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  11. Kulish, P.P., Sklyanin, E.K.: Integrable Quantum Field Theories. Springer, Berlin (1982)

    MATH  Google Scholar 

  12. Kulish, P.P., Manojlović, N., Nagy, Z.: Symmetries of spin systems and Birman–Wenzl–Murakami algebra. J. Math. Phys. 51, 043516 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jimbo, M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Izergin, A.G., Korepin, V.E.: The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys. 79, 303 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y.: Teleportation, braid group and Temperley–Lieb algebra. J. Phys. A: Math. Gen. 39, 11599–11622 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chen, J.L., Xue, K., Ge, M.-L.: Braiding transformation, entanglement swapping and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  17. Wang, G., Xue, K., Sun, C., Zhou, C., Hu, T., Wang, Q.: Temperley—Lieb algebra, Yang-Baxterization and universal gate. Quant. Inf. Proc. 9(6), 699 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, G., Sun, C., Liu, B., Liu, Y., Zhang, Y., Xue, K.: Topological basis associated with B–M–W algebra: Two-spin-1/2 realization. Phys. Lett. A 379 (1-2), 1 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sun, C.F., Xue, K., Wang, G.C., Zhou, C.C., Du, G.J.: The topological basis realization and the corresponding XXX spin chain. Europhys. Lett. 94, 50001 (2011)

    Article  ADS  Google Scholar 

  20. Hu, S.W., Xue, K., Ge, M.L.: Optical simulation of the Yang-Baxter equation. Phys. Rev. A 78, 022319 (2008)

    Article  ADS  Google Scholar 

  21. Han, J.H., Zang, J., Yang, Z., Park, J.H., Nagaosa, N.: Skyrmion lattice in two-dimensional chiral magnet. Phys. Rev. B 82, 094429 (2010)

    Article  ADS  Google Scholar 

  22. Furukawa, S., Sato, M., Onoda, S.: Chiral order and electromagnetic dynamics in one-dimensional multiferroic cuprates. Phys. Rev. Lett. 105, 257205 (2010)

    Article  ADS  Google Scholar 

  23. Hu, C.D.: Magnetic-order-induced ferroelectricity in orthorhombic perovskite manganites. Phys. Rev. B 75, 172106 (2007)

    Article  ADS  Google Scholar 

  24. Dzyaloshinskii, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  25. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  26. Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005)

    Article  ADS  Google Scholar 

  27. Sergienko, I. A., Dagotto, E.: Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006)

    Article  ADS  Google Scholar 

  28. Bogdanov, A.N., RoBle, U.K., Wolf, M., Muller, K.H.: Modulated and localized structures in chiral antiferromagnets with weak ferromagnetism. Phys. Rev. B Condensed Matter 82(9), 2058 (2010)

    Google Scholar 

  29. Bogdanov, A., Hubert, A.: Thermodynamically stable magnetic vortex states in magnetic crystalsThermodynamically stable magnetic vortex states in magnetic crystals. J. Magn. Magn. Mater. 138, 255 (1994)

    Article  ADS  Google Scholar 

  30. Wang, X.: Effects of anisotropy on thermal entanglement. Phys. Lett. A 281, 101 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Xue, K. & Wang, G. Topological Basis Method for Four-Qubit Spin-\(\frac {1}{2}\) XXZ Heisenberg Chain with Dzyaloshinskii-Moriya Interaction. Int J Theor Phys 56, 802–809 (2017). https://doi.org/10.1007/s10773-016-3223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3223-4

Keywords

Navigation