Skip to main content
Log in

Some Evolution Formulas on the Optical Fields Propagation in Realistic Environments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Evolution formulas of the density operator, the photon number distribution, and the Wigner function are derived for the problem on the optical fields propagation in realistic environments. Using the idea “reservoir modeled by beam splitter (BS)” and the Weyl expansion of the density operator, we obtain these formulas cleverly, which are very useful for quantum optics and quantum statistics. As an application, we study the time evolution of the photon number distribution and the Wigner function for single-photon-added coherent state in thermal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scully, M. O., Zubairy, M. S.: Quantum Optics. Cambridge University Press (1997)

  2. Carmichael, H. J.: Statistical Methods in Quantum Optics, vol. 1. Springer, Berlin (1999)

  3. Carmichael, H. J.: An Open Systems Approach to Quantum Optics. Springer, Berlin (1999)

    MATH  Google Scholar 

  4. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  5. Jeong, H., Lee, J., Kim, M. S.: Phys. Rev. A 61, 052101 (2000)

    Article  ADS  Google Scholar 

  6. Huang, L., Guo, Q., Xu, X. X., Yuan, W.: Int. J. Theor. Phys. 53, 3970 (2014)

    Article  Google Scholar 

  7. Daeubler, B., Risken, H., Schoendorff, L.: Phys. Rev. A 48, 3955 (1993)

    Article  ADS  Google Scholar 

  8. Briegel, H. J., Englert, B. G.: Phys. Rev. A 47, 3311 (1993)

    Article  ADS  Google Scholar 

  9. d’Ariano, G. M.: Phys. Lett. A 187, 231 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fan, H. Y., Hu, L. Y.: Mod. Phys. Lett. B 22, 2435 (2008)

    Article  ADS  Google Scholar 

  11. Kim, M. S., Imoto, N.: Phys. Rev. A 52, 2401 (1995)

    Article  ADS  Google Scholar 

  12. Leonhardt, U.: Phys. Rev. A 48, 3265 (1993)

    Article  ADS  Google Scholar 

  13. Palma, G. D., Mari, A., Giovannetti, V., Holevo, A. S.: J. Math. Phys. 56, 052202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Marian, P., Marian, T. A.: Phys. Rev. A 74, 042306 (2006)

    Article  ADS  Google Scholar 

  15. Rahimi-Keshari, S., Ralph, T. C.: Phys. Rev. X 6, 021039 (2016)

    Google Scholar 

  16. Hu, L. Y., Liao, Z. Y., Ma, S. L., Zubairy, M. S.: Phys. Rev. A 93, 033807 (2016)

    Article  ADS  Google Scholar 

  17. Barnett, S. M., Radmore, P. M.: Methods in Theoretical Quantum Optics. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  18. Chowdhury, S. H. H., Ali, S. T.: J. Math. Phys. 56, 122102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kenfack, A., Zyczkowski, K.: J. Opt. B, Quantum Semiclass. Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Puri, R. R.: Mathematical Methods of Quantum Optics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  21. Spagnolo, N., Vitelli, C., Angelis, T. D., Sciarrino, F., Martini, F. D.: Phys. Rev. A 80, 032318 (2009)

    Article  ADS  Google Scholar 

  22. Yuan, H. C., Wang, Z., Chen, Q. M., Dou, X. M.: Mod. Phys. Lett. A 30, 1550109 (2015)

    Article  ADS  Google Scholar 

  23. Yuan, H. C., Xu, X. X.: Mod. Phys. Lett. B 29, 1550219 (2015)

    Article  ADS  Google Scholar 

  24. Hu, L. Y., Fan, H. Y.: Opt. Commun. 282, 4379 (2009)

    Article  ADS  Google Scholar 

  25. Parisio, F.: J. Math. Phys. 57, 032101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China(11665013 and 11447002) and the Natural Science Foundation of Jiangxi Province of China (20151BAB202013) as well as the Research Foundation of the Education Department of Jiangxi Province of China (GJJ150338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-xiang Xu.

Appendices

Appendix A: Some Character of Squeezed Thermal State

In this appendix, we give a good expression of the density operator and then calculate the CF and WF for squeezed thermal state.

1.1 1) Density operator

Recalling the P-function of squeezed thermal state ρ b

$$ \rho_{b}=\frac{1}{\bar{n}}\int \frac{d^{2}\eta} {\pi} e^{-\frac{1}{\bar{n}} \left\vert \eta \right\vert^{2}}S\left( \lambda \right) \left\vert \eta \right\rangle \left\langle \eta \right\vert S^{\dag} \left( \lambda \right) . $$
(24)

and noticing the squeezing operator \(S\left (\lambda \right ) =\int \frac {dx}{ \sqrt {e^{-\lambda } }}\left \vert \frac {x}{e^{-\lambda } }\right \rangle \left \langle x\right \vert \) with \(\left \vert x\right \rangle =\pi ^{-\frac {1}{ 4}}e^{-x^{2}/2+\sqrt {2}xb^{\dag } -b^{\dag 2}/2}\left \vert 0\right \rangle \), leading to

$$ S\left( \lambda \right) \left\vert \eta \right\rangle =\frac{1}{\sqrt{\mu} } e^{-\frac{\left\vert \eta \right\vert^{2}}{2}-\frac{\nu} {2}\eta^{2}+\frac{ \eta} {\mu} b^{\dag} +\frac{\nu} {2}b^{\dag 2}}\left\vert 0\right\rangle , $$
(25)

with \(\mu =\cosh \lambda \) and \(\nu =\tanh \lambda \), we know

$$\begin{array}{@{}rcl@{}} \rho_{b} &=&\frac{1}{\mu \bar{n}}\int \frac{d^{2}\eta} {\pi} e^{-\left( \frac{1}{\bar{n}}+1\right) \left\vert \eta \right\vert^{2}-\frac{\nu} {2} \left( \eta^{2}+\eta^{\ast 2}\right)} \\ &&\times e^{\frac{1}{\mu} \eta b^{\dag} +\frac{\nu} {2}b^{\dag 2}}\left\vert 0\right\rangle \left\langle 0\right\vert e^{\frac{1}{\mu} \eta^{\ast} b+ \frac{\nu} {2}b^{2}}. \end{array} $$
(26)

This expression of the density operator can help us calculate its statistical properties.

1.2 2) Characteristic function

The CF of squeezed thermal state is given by \(\chi _{b}\left (\beta \right ) = \)Tr\(\left (\rho _{b}D_{b}\left (\beta \right ) \right ) \) with \(D_{b}\left (\beta \right ) =e^{\left \vert \beta \right \vert ^{2}/2}e^{-\beta ^{\ast }b}e^{\beta b^{\dag } }\) [25]. Thus, we have

$$\begin{array}{@{}rcl@{}} \chi_{b}\left( \beta \right) &=&\frac{1}{\mu \bar{n}}e^{\frac{\left\vert \beta \right\vert^{2}}{2}}\int \frac{d^{2}\eta} {\pi} e^{-\left( \frac{1}{ \bar{n}}+1\right) \left\vert \eta \right\vert^{2}-\frac{\nu} {2}\left( \eta^{2}+\eta^{\ast 2}\right)} \\ &&\left\langle 0\right\vert e^{\frac{1}{\mu} \eta^{\ast} b-\beta^{\ast} b+ \frac{\nu} {2}b^{2}}e^{\frac{1}{\mu} \eta b^{\dag} +\beta b^{\dag} +\frac{ \nu} {2}b^{\dag 2}}\left\vert 0\right\rangle \\ &=&\exp \left( -M\left\vert \beta \right\vert^{2}+N\beta^{2}+N\beta^{\ast} {}^{2}\right) . \end{array} $$
(27)

1.3 3) Wigner function

Using (10) and (26), we obtain the WF of the squeezed thermal state as follows

$$ W_{\rho_{b}}(\varepsilon )=\frac{2}{\pi \left( 2\bar{n}+1\right)} e^{-\frac{ 2\cosh 2\lambda} {2\bar{n}+1}\left\vert \varepsilon \right\vert^{2}+\frac{ \sinh 2\lambda} {2\bar{n}+1}\left( \varepsilon^{2}+\varepsilon^{\ast} {}^{2}\right)} . $$
(28)

1.4 1) Normalization factor

Using Tr\(\left (\rho _{a}\right ) =1\), we have the normalization factor

$$\begin{array}{@{}rcl@{}} {\Gamma} &=&e^{-\left\vert \kappa \right\vert^{2}}\frac{d^{2}}{dh_{1}ds_{1}}\left\langle 0\right\vert e^{\left( h_{1}+\kappa^{\ast} \right) a}e^{\left( s_{1}+\kappa \right) a^{\dag} }\left\vert 0\right\rangle |_{s_{1}=h_{1}=0} \\ &=&e^{-\left\vert \kappa \right\vert^{2}}\frac{d^{2}}{dh_{1}ds_{1}} e^{\left( h_{1}+\kappa^{\ast} \right) \left( s_{1}+\kappa \right)} |_{s_{1}=h_{1}=0} \\ &=&1+\left\vert \kappa \right\vert^{2}, \end{array} $$
(30)

1.5 2) characteristic function

Substituting \(D_{a}\left (\alpha \right ) =e^{\frac {\left \vert \alpha \right \vert ^{2}}{2}}e^{-\alpha ^{\ast } a}e^{\alpha a^{\dag } }\) and (29) into \(\chi _{in}\left (\alpha \right ) =\)Tr\(\left (\rho _{a}D_{a}\left (\alpha \right ) \right ) \), we obtain the CF as follows

$$\begin{array}{@{}rcl@{}} \chi_{in}\left( \alpha \right) &=&\frac{e^{\frac{\left\vert \alpha \right\vert^{2}}{2}-\left\vert \kappa \right\vert^{2}}}{\Gamma} \frac{ d^{2}}{dh_{1}ds_{1}}e^{\left( h_{1}+\kappa^{\ast} -\alpha^{\ast} \right) \left( s_{1}+\kappa +\alpha \right)} |_{s_{1}=h_{1}=0} \\ &=&\frac{e^{-\frac{\left\vert \alpha \right\vert^{2}}{2}+\alpha \kappa^{\ast} -\kappa \alpha^{\ast} }}{\Gamma} \left( \alpha \kappa^{\ast} -\kappa \alpha^{\ast} -\left\vert \alpha \right\vert^{2}+\left\vert \kappa \right\vert^{2}+1\right) , \end{array} $$
(31)

1.6 3) Wigner function

Substituting (29) into (10), we obtain the WF

$$\begin{array}{@{}rcl@{}} W_{\left\vert \psi_{a}\right\rangle} (\varepsilon ) &=&\frac{ 2e^{2\left\vert \varepsilon \right\vert^{2}-\left\vert \kappa \right\vert^{2}}}{\pi {\Gamma}} \frac{d^{2}}{dh_{1}ds_{1}}e^{\left( h_{1}+\kappa^{\ast} -2\varepsilon^{\ast} \right) \left( 2\varepsilon -s_{1}-\kappa \right) \allowbreak} |_{s_{1}=h_{1}=0} \\ &=&\frac{2e^{-2\left\vert \kappa -\varepsilon \right\vert^{2}}}{\pi {\Gamma}} \left( \left\vert \kappa \right\vert^{2}-2\kappa \varepsilon^{\ast} -2\varepsilon \kappa^{\ast} +4\left\vert \varepsilon \right\vert^{2}-1\right) . \end{array} $$
(32)

Appendix B: Some Character of Single-Photon-Added Coherent State

In this appendix, we derive the normalization factor, the CF and the WF for the SPACS, whose density operator \(\rho _{a}=\left \vert \psi _{a}\right \rangle \left \langle \psi _{a}\right \vert \) can be expressed as

$$ \rho_{a}=\frac{e^{-\left\vert \kappa \right\vert^{2}}}{\Gamma} \frac{ d^{2}}{dh_{1}ds_{1}}e^{\left( s_{1}+\kappa \right) a^{\dag} }\left\vert 0\right\rangle \left\langle 0\right\vert e^{\left( h_{1}+\kappa^{\ast} \right) a}|_{s_{1}=h_{1}=0}. $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Xx., Yuan, Hc. Some Evolution Formulas on the Optical Fields Propagation in Realistic Environments. Int J Theor Phys 56, 791–801 (2017). https://doi.org/10.1007/s10773-016-3221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3221-6

Keywords

Navigation