Skip to main content
Log in

Single-photon router: Implementation of Information-Holding of Quantum States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum router is an indispensable element in the future quantum network. In this study, by calculating the fidelity of the atom, we show that the quantum router proposed by J. Lu et al. (Phys. Rev. A 89, 013805, 2014) achieves quantum information-holding. After the single photon passes through the atom, the fidelity of the atom decreases from the maximum value after a period of time and rises to the maximum value of 1. Even upon changing the size of the classical field, this phenomenon will not disappear, only undergo a cycle change. This means such a single-photon quantum router can be applied experimentally since quantum state can be perfectly held after the routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Steiner, M., Meyer, H.M., Reichel, J., Köhl, M.: Photon emission and absorption of a single ion coupled to an optical-fiber cavity. Phys. Rev. Lett. 113, 263003 (2014)

    Article  ADS  Google Scholar 

  2. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  3. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  4. Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85, 021801(R) (2012)

    Article  ADS  Google Scholar 

  5. Ma, X., Zotter, S., Kofler, J., Jennewin, T., Zeilinger, A.: Experimental generation of single photons via active multiplexing. Phys. Rev. A 83, 043814 (2011)

    Article  ADS  Google Scholar 

  6. Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3, 031013 (2013)

    Google Scholar 

  7. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  8. Lemr, K., Bartkiewicz, K., Černoch, A., Soubusta, J.: Resource-efficient linear-optical quantum router. Phys. Rev. A 87, 062333 (2013)

    Article  ADS  Google Scholar 

  9. Paganelli, S., Lorenzo, S., Apollaro, T.J., Plastina, F., Giorgi, G.L.: Routing quantum information in spin chains. Phys. Rev. A 87, 062309 (2013)

    Article  ADS  Google Scholar 

  10. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    Article  ADS  Google Scholar 

  11. Shen, J.T., Fan, S.: Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett. 98, 153003 (2007)

    Article  ADS  Google Scholar 

  12. Shen, J.T., Fan, S.: Strongly correlated multiparticle transport in one dimension through a quantum impurity. Phys. Rev. A 76, 062709 (2007)

    Article  ADS  Google Scholar 

  13. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  14. Roy, D.: Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide and electromagnetically induced transparency. Phys. Rev. Lett. 106, 053601 (2011)

    Article  ADS  Google Scholar 

  15. Rephaeli, E., Fan, S.: Stimulated emission from a single excited atom in a waveguide. Phys. Rev. Lett. 108, 143602 (2012)

    Article  ADS  Google Scholar 

  16. Longo, P., Schmitteckert, P., Busch, K.: Few-photon transport in low-dimensional systems: interaction-induced radiation trapping. Phys. Rev. Lett. 104, 023602 (2010)

    Article  ADS  Google Scholar 

  17. Zheng, H., Gauthier, D.J., Baranger, H.U.: Cavity-free photon blockade induced by many-body bound states. Phys. Rev. Lett. 107, 223601 (2011)

    Article  ADS  Google Scholar 

  18. Zheng, H., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013)

    Article  ADS  Google Scholar 

  19. Zheng, H., Baranger, H.U.: Waveguide-QED-based photonic quantum computations. Phys. Rev. Lett. 111, 090502 (2013)

    Article  ADS  Google Scholar 

  20. Liao, J.Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)

    Article  ADS  Google Scholar 

  21. Huang, J.F., Shi, T., Sun, C.P., Nori, F.: Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    Article  ADS  Google Scholar 

  22. Alexanian, M.: Scattering of two coherent photons inside a one-dimensional coupled-resonator waveguide. Phys. Rev. A 81, 015805 (2010)

    Article  ADS  Google Scholar 

  23. Yan, W.B., Fan, Q.B., Zhou, L.: Control of correlated two-photon transport in a one-dimensional waveguide. Phys. Rev. A 85, 015803 (2012)

    Article  ADS  Google Scholar 

  24. Zhou, L., Chang, Y., Dong, H., Kuang, L.M., Sun, C.P.: Inherent Mach-Zehnder interference with which-way detection for single-particle scattering in one dimension. Phys. Rev. A 85, 013806 (2012)

    Article  ADS  Google Scholar 

  25. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.J., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  26. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature (London) 450, 402 (2007)

    Article  ADS  Google Scholar 

  27. Astafiev, O.V., Abdumalikov, A.A., Zagoskin, A.M., Pashkin, Y.A., Nakamura, Y., Tsai, J.S.: Ultimate on-chip quantum amplifier. Phys. Rev. Lett. 104, 183603 (2010)

    Article  ADS  Google Scholar 

  28. Astafiev, O., Zagoskin, A.M., Abdumalikov, A.A., Pashkin, Y.A., Yamamoto, T., Inomata, K., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840 (2010)

    Article  ADS  Google Scholar 

  29. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  30. Bajcsy, M., Hofferberth, S., Balic, V., Peyronel, T., Hafezi, M., Zibrov, A.S., Vuletic, V., Lukin, M.D.: Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009)

    Article  ADS  Google Scholar 

  31. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  32. Bleuse, J., Claudon, J., Creasey, M., Malik, N.S., Gerard, J.M., Maksymov, I., Hugonin, J.P., Lalanne, P.: Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011)

    Article  ADS  Google Scholar 

  33. Laucht, A., Pütz, S., Günthner, T., Hauke, N., Saive, R., Frédérick, S., Bichler, M., Amann, M.C., Holleitner, A.W., Kaniber, M., Finley, J.J.: A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012)

    Google Scholar 

  34. Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  35. Sun, Z.G., Lou, N.Q.: Autler-townes splitting in the multiphoton resonance ionization spectrum of molecules produced by ultrashort laser pulses. Phys. Rev. Lett. 91, 023002 (2003)

    Article  ADS  Google Scholar 

  36. Ian, H., Liu, Y.-x., Nori, F.: Tunable electromagnetically induced transparency and absorption with dressed superconducting qubits. Phys. Rev. A 81, 063823 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant No. 61471356, 11365009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Ga., Lu, H. & Chen, Ax. Single-photon router: Implementation of Information-Holding of Quantum States. Int J Theor Phys 55, 3366–3374 (2016). https://doi.org/10.1007/s10773-016-2965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2965-3

Keywords

Navigation