Skip to main content
Log in

Robust Quantum Private Queries

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new quantum private query protocol with the technique of decoherence-free states, which is a theoretical study of how decoherence-free states can be used for the protection of quantum information in such a protocol. This protocol can solve the noise problem that will make the user obtain a wrong answer and hence give rise to a bad influence on the reputation of the database provider. Furthermore, this protocol is also flexible, loss-resistant and easily generalized to a large database similar to the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings 36th IEEE Symposium on Foundations of Computer Science. IEEE Press (1995)

  2. Kerenidis, I., Wolf, R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. In: Proceedings of 35th ACM STOC, 2003, pp. 106-115, arXiv:quantph/0208062

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–629 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rabin, M.O.: How to exchange secrets with oblivious transfer. Technical Report TR-81, 1981, Harvard Aiken Computational Laboratory

  6. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logrithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80(19), 4329–4332 (1998)

    Article  ADS  Google Scholar 

  8. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proceedings IEEE International Conference On Computers, Systems and Signal Processing, pp. 175–179. IEEE Press (1984)

  9. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5), 057901 (2004)

    Article  ADS  Google Scholar 

  10. Kerenidis, I., Wolf, R.: Quantum symmetrically-private information retrieval. Inf. Process. Lett. 90(3), 109–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  12. Martini, F.D., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L., Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev. A 80(1), 010302 (2009)

    Article  Google Scholar 

  13. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inf. Theory 56(7), 3465–3477 (2010)

    Article  MathSciNet  Google Scholar 

  14. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 022313 (2011)

    Article  ADS  Google Scholar 

  15. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  16. Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20(16), 17411–17420 (2012)

    Article  ADS  Google Scholar 

  17. Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87(1), 012331 (2013)

    Article  ADS  Google Scholar 

  18. Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88(2), 022334 (2013)

    Article  ADS  Google Scholar 

  19. Yang, Y.G., Sun, S.J., Xue, P., Tian, J.: Flexible protocol for quantum private query based on b92 protocol. Quant. Inf. Process 13(3), 805–813 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key- distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  ADS  Google Scholar 

  21. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44(10), 36–44 (1991)

    Article  Google Scholar 

  23. Lidar, D.A., Whaley, K.B.: Decoherence-free subspaces and subsystems. e-print arXiv:quant-ph/0301032

  24. Cai, X.Q., Liu, Q.Q.: Robust message authentication over a collective-noise channel. Int. J. Quant. Inf. 10(6), 1250064 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  26. Bourennane, M., Eibl, M., Gaertner, S., Kurtsiefer, C., Cabello, A., Weinfurter, H.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92(10), 107901 (2004)

    Article  ADS  Google Scholar 

  27. Wang, X.B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 050304 (2005)

    Article  ADS  Google Scholar 

  28. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 020301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, X.H., Deng, F.G., Zhou H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  30. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys Rev. A 80(3), 032321 (2009)

    Article  ADS  Google Scholar 

  31. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  32. Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  33. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Raynal, P.: Unambiguous state discrimination of two density matrices in quantum information theory. e-print arXiv:quant-ph/0611133

  35. Herzog, U., Bergou, J.A.: Optimum unambiguous discrimination of two mixed quantum states. Phys. Rev. A 71(5), 050301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Fuchs, C.A.: Distinguishability and accessible information in quantum theory. e-print arXiv:quant-ph/9601020

  37. Helstrom, C.W.: Quantum detection and estimation theory. J. Statis. Phys. 1(2), 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (863 Program)(Grant No. 2015AA011704), the Key Program of NSFC Union Foundation (Grant Nos. U1135002, U1405255), the National Natural Science Foundation of China (Grant Nos. 61202317, 61572246), the Plan for Scientific Innovation Talents of Henan Province, the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 13HASTIT042), and the Key Scientific Research Project in Universities of Henan Province (Grant No. 16A520021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Wang, SY. & Ma, JF. Robust Quantum Private Queries. Int J Theor Phys 55, 3309–3317 (2016). https://doi.org/10.1007/s10773-016-2960-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-2960-8

Keywords

Navigation