Skip to main content
Log in

A General Holographic Superconductor Model with Non-Negative Scalar Mass

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study a general holographic superconductor model in four dimensional AdS back hole background. We explore the properties of the phase transitions in the scalar condensation and conclude the correspondence of a lower critical temperature with a deeper condensation gap holds with various scalar field mass above zero. We also examine the effects of the model parameters on the phase transition and find that this model allows first order phase transitions to occur with non-negative scalar mass when the model parameter is above a threshold value. Finally, we study the effects of the backreaction and scalar mass on the threshold model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maldacena, J.M.: The large-N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Hartnoll, S.A.: Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Herzog, C.P.: Lectures on Holographic Superfluidity and Superconductivity. J. Phys. A 42, 343001 (2009)

    Article  MathSciNet  Google Scholar 

  6. Horowitz, G.T.: Introduction to Holographic Superconductors. Lect. Notes Phys. 828, 313 (2011). arXiv:1002.1722 [hep-th]

    Article  ADS  Google Scholar 

  7. Horowitz, G.T., Roberts, M.M.: Phys. Rev. D 78, 126008 (2008)

    Article  ADS  Google Scholar 

  8. Nakano, E., Wen, W.Y.: Critical magnetic field in AdS/CFT superconductor. Phys. Rev. D 78, 046004 (2008)

    Article  ADS  Google Scholar 

  9. Koutsoumbas, G., Papantonopoulos, E., Siopsis, G.: Exact Gravity Dual of a Gapless Superconductor. J. High Energy Phys. 0907, 026 (2009)

    Article  ADS  Google Scholar 

  10. Sonner, J.: A Rotating Holographic Superconductor. Phys. Rev. D 80, 084031 (2009)

    Article  ADS  Google Scholar 

  11. Gubser, S.S., Herzog, C.P., Pufu, S.S., Tesileanu, T.: Superconductors from Superstrings. Phys. Rev. Lett. 103, 141601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Holographic Superconductors. J. High Energy Phys. 0812, 015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Liu, Y.Q., Pan, Q.Y., Wang, B.: Holographic superconductor developed in BTZ black hole background with backreactions. Phys. Lett. B 702, 94 (2011)

    Article  ADS  Google Scholar 

  14. Peng, Y., Kuang, X.M., Liu, Y.Q., Wang, B.: Phase transition in the holographic model of superfluidity with backreactions. arXiv:1106.4353 [hep-th]

  15. Gauntlett, J.P., Sonner, J., Wiseman, T.: Holographic superconductivity in M-Theory. Phys. Rev. Lett. 103, 151601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jing, J.L., Chen, S.B.: Holographic superconductors in the Born-Infeld electrodynamics. Phys. Lett. B 686, 68 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Herzog, C.P.: An Analytic Holographic Superconductor. Phys. Rev. D 81, 126009 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Maeda, K., Natsuume, M., Okamura, T.: Universality class of holographic superconductors. Phys. Rev. D 79, 126004 (2009)

    Article  ADS  Google Scholar 

  19. Gregory, R., Kanno, S., Soda, J.: Holographic Superconductors with Higher Curvature Corrections. J. High Energy Phys. 0910, 010 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Pan, Q.Y., Wang, B., Papantonopoulos, E., Oliveira, J., Pavan, A.B.: Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity. Phys. Rev. D 81, 106007 (2010)

    Article  ADS  Google Scholar 

  21. Ge, X.H., Wang, B., Wu, S.F., Yang, G.H.: Analytical study on holographic superconductors in external magnetic field. J. High Energy Phys. 1008, 108 (2010)

    Article  ADS  Google Scholar 

  22. Brihaye, Y., Hartmann, B.: Holographic superconductors in 3 + 1 dimensions away from the probe limit. Phys. Rev. D 81, 126008 (2010)

    Article  ADS  Google Scholar 

  23. Brihaye, Y., Hartmann, B.: Phys. Rev. D 83, 126008 (2011)

    Article  ADS  Google Scholar 

  24. Gubser, S.S.: Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008)

    Article  ADS  Google Scholar 

  25. Hartnoll, S.A., Herzog, C.P., Horowitz, G.T.: Building an AdS/CFT superconductor. Phys. Rev. Lett. 101, 031601 (2008)

    Article  ADS  Google Scholar 

  26. Herzog, C.P., Kovtun, P.K., Son, D.T.: Holographic model of superfluidity. Phys. Rev. D 79, 066002

  27. Horowitz, G.T., Way, B.: Complete Phase Diagrams for a Holographic Superconductor/Insulator System. J. High Energy Phys. 1011, 011 (2010)

    Article  ADS  Google Scholar 

  28. Franco, S., Garcia-Garcia, A.M., Rodriguez-Gomez, D.: A general class of holographic superconductors. J. High Energy Phys. 1004, 092 (2010)

    Article  ADS  Google Scholar 

  29. Franco, S., Garcia-Garcia, A.M., Rodriguez-Gomez, D.: A holographic approach to phase transitions. Phys. Rev. D 81, 041901(R) (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Pan, Q.Y., Wang, B.: General holographic superconductor models with Gauss-Bonnet corrections. Phys. Lett. B 693, 159 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. Peng, Y., Pan, Q.Y.: Stückelberg Holographic Superconductor Models with Backreactions. Commun. Theor. Phys. 59, 110 (2013)

    Article  ADS  MATH  Google Scholar 

  32. Yan, P., Pan, Q.Y., Wang, B.: Various types of phase transitions in the AdS soliton background. Phys. Lett. B 699, 383 (2011)

    Article  ADS  Google Scholar 

  33. Cai, R.G., He, S., Li, L., Li, L.F.: Entanglement Entropy and Wilson Loop in Stückelberg Holographic Insulator/Superconductor Model. J. High Energy Phys. 1210, 107 (2012). arXiv:1209.1019 [hep-th]

    Article  ADS  Google Scholar 

  34. Peng, Y., Pan, Q.: Holographic entanglement entropy in general holographic superconductor models. JHEP 06, 011 (2014)

    Article  ADS  Google Scholar 

  35. Horowitz, Gary T., Roberts, M.M.: Holographic Superconductors with Various Condensates. Phys. Rev. D 78, 126008 (2008)

    Article  ADS  Google Scholar 

  36. Gubser, S.S.: Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 065034, 78 (2008)

    Google Scholar 

  37. Breitenlohner, P., Freedman, D.Z.: Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity. Phys. Lett. B 115, 197 (1982)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant No. 11305097 and 11401357, the education department of Shaanxi province of China under Grant No. 2013JK0616 and the Foundation of Shaaxi University of Technology of China under Grant No. SLGQD13-23.

Conflict of interests

The authors declared that they have no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Deng, Fa., Yong, L. et al. A General Holographic Superconductor Model with Non-Negative Scalar Mass. Int J Theor Phys 55, 361–366 (2016). https://doi.org/10.1007/s10773-015-2666-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2666-3

Keywords

Navigation