Skip to main content
Log in

Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 823 (1935)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: On the einstein podolsky rosen paradox. Phys. 1, 195 (1964)

    Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  MATH  Google Scholar 

  5. Bengtsson, I., życzkowski, K.: Geometry of quantum states: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  6. Li, X., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum dense coding exploiting a bright einstein-podolsky-rosen beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Abdi, M., Pirandola, S., Tombesi, P., Vitali, D.: Entanglement swapping with local certification: Application to remote micromechanical resonators. Phys. Rev. Lett. 109, 143601 (2012)

    Article  ADS  Google Scholar 

  9. Richter, T., Vogel, W.: Nonclassical characteristic functions for highly sensitive measurements. Phys. Rev. A 76, 053835 (2007)

    Article  ADS  Google Scholar 

  10. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156 (1999)

    Article  ADS  Google Scholar 

  11. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  12. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information. Vols I and II. World Scientific (2007)

  13. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  15. Yu, T., Eberly, J.H.: Quantum open system theory: Bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)

    Article  ADS  Google Scholar 

  16. Laurat, J., Choi, K.S., Deng, H., Chou, C.W., Kimble, H.J.: Heralded entanglement between atomic ensembles: Preparation, decoherence, scaling. Phys. Rev. Lett. 99, 180504 (2007)

    Article  ADS  Google Scholar 

  17. Ficek, Z., Tanaś, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  Google Scholar 

  18. Berrada, K.: Quantum metrology with su(1,1) coherent states in the presence of nonlinear phase shifts. Phys. Rev. A 88, 013817 (2013)

    Article  ADS  Google Scholar 

  19. Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of bell-type inequalities. Phys. Rev. A 80, 022111 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Torlai, G., McKeown, G., Marek, P., Filip, R., Jeong, H., Paternostro, M., De Chiara, G.: Violation of bell’s inequalities with preamplified homodyne detection. Phys. Rev. A 87, 052112 (2013)

    Article  ADS  Google Scholar 

  21. Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G., Brune, M., Raimond, J.M., Haroche, S.: Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity. Phys. Rev. Lett. 91, 230405 (2003)

    Article  ADS  Google Scholar 

  22. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity qed. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  23. Phoenix, S.J.D., Barnett, S.M.: Non-local interatomic correlations in the micromaser. J. Mod. Opt. 40, 979 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  24. Prants, S.V., Uleysky, M.Y., Argonov, V.Y.: Entanglement, fidelity, and quantum-classical correlations with an atom moving in a quantized cavity field. Phys. Rev. A 73, 023807 (2006)

    Article  ADS  Google Scholar 

  25. Tesfa, S.: Entanglement amplification in a nondegenerate three-level cascade laser. Phys. Rev. A 74, 043816 (2006)

    Article  ADS  Google Scholar 

  26. Sainz, I., Björk, G.: Entanglement invariant for the double jaynes-cummings model. Phys. Rev. A 76, 042313 (2007)

    Article  ADS  Google Scholar 

  27. Ma, J.M., Jiao, Z.Y., Li, N.: Entropy and entanglement of a single-mode vacuum field interacting with a Ξ-type three-level atom with detuning. Int. J. Theor. Phys. 47, 350356 (2008)

    MathSciNet  Google Scholar 

  28. Yadollahi, F., Tavassoly, M.K.: A theoretical scheme for generation of gazeau–klauder coherent states via intensity-dependent degenerate raman interaction. Opt. Commun. 284 (2), 608 (2011)

    Article  ADS  Google Scholar 

  29. Tavassoly, M.K., Yadollahi, F.: Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features. Int. J. Mod. Phys. B 26, 1250027 (2012)

    Article  ADS  Google Scholar 

  30. Sahrai, M., Tajalli, H.: Sub-half-wavelength atom localization of a v-type three-level atom via relative phase. J. Opt. Soc. Am. B 30, 512 (2013)

    Article  ADS  Google Scholar 

  31. Baghshahi, H.R., Tavassoly, M.K.: Entanglement, quantum statistics and squeezing of two Ξ-type three-level atoms interacting nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014)

    Article  ADS  Google Scholar 

  32. Obada, A.S.F., Ahmed, M.M.A., Khalil, E.M., Ali, S.I.: Entangled two two-level atoms interacting with a cavity field in the presence of the stark shift terms. Opt. Commun. 287, 215 (2013)

    Article  ADS  Google Scholar 

  33. Joshi, A.: Nonlinear dynamical evolution of the driven two-photon jaynes-cummings model. Phys. Rev. A 62, 043812 (2000)

    Article  ADS  MATH  Google Scholar 

  34. Bashkirov, E.K., Rusakova, M.S.: Atom-field entanglement in two-atom jaynes–cummings model with nondegenerate two-photon transitions. Opt. Commun. 281, 4380 (2008)

    Article  ADS  Google Scholar 

  35. Baghshahi, H. R., Tavassoly, M. K., Behjat, A.: Dynamics of entropy and nonclassicality features of the interaction between a ◇-type four-level atom and a single-mode field in the presence of intensity-dependent. Coupling and kerr nonlinearity. Commun. Theor. Phys. 62, 430 (2014)

    Article  MathSciNet  Google Scholar 

  36. Bužek, V.: Jaynes-cummings model with intensity-dependent coupling interacting with holstein-primakoff su(1,1) coherent state. Phys. Rev. A 39, 3196 (1989)

    Article  ADS  Google Scholar 

  37. Sivakumar, S.: Nonlinear jaynes–cummings model of atom–field interaction. Int. J. Theor. Phys. 43, 2405 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fink, J.M., Göppl, M., Baur, M., Bianchetti, R., Leek, P.J., Blais, A., Wallraff, A.: Climbing the jaynes–cummings ladder and observing its \(\sqrt {n}\) nonlinearity in a cavity qed system. Nature 454, 315 (2008)

    Article  ADS  Google Scholar 

  39. Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Entanglement analysis of a two-atom nonlinear JaynesCummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift. Laser Phys. 24, 125203 (2014)

    Article  ADS  Google Scholar 

  40. Agarwal, G.S., Puri, R.R.: Collapse and revival phenomenon in the evolution of a resonant field in a kerr-like medium. Phys. Rev. A 39, 2969 (1989)

    Article  ADS  Google Scholar 

  41. Obada, A.S., Mohammed, F., Hessian, H., Mohamed, A.B.: Entropies and entanglement for initial mixed state in the multi-quanta jc model with the stark shift and kerr-like medium. Int. J. Theor. Phys. 46, 1027 (2007)

    Article  MATH  Google Scholar 

  42. Abdel-Aty, M.: Quantum phase entropy and entanglement of a multiphoton three-level atom near the edge of a photonic band gap. Laser Phys. 16, 1381 (2006)

    Article  ADS  Google Scholar 

  43. Hessian, H.A., Hashem, M.: Entanglement and purity loss for the system of two 2-level atoms in the presence of the stark shift. Quantum Inf. Process 10(4), 543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B: At. Mol. Opt. Phys. 45, 035502 (2012)

    Article  ADS  Google Scholar 

  45. Miry, S.R., Tavassoly, M.K.: Generation of a class of su (1,1) coherent states of the Gilmore-Perelomov type and a class of su (2) coherent states and their superposition. Phys. Scr. 85, 035404 (2012)

    Article  ADS  Google Scholar 

  46. Miry, S.R., Shahpari, M., Tavassoly, M.K.: Nonlinear elliptical states: Generation and nonclassical properties. Opt. Commun. 306, 49 (2013)

    Article  ADS  Google Scholar 

  47. Honarasa, G.R., Tavassoly, M.K.: Generalized deformed kerr states and their physical properties. Phys. Scr. 86, 035401 (2012)

    Article  ADS  Google Scholar 

  48. Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. J. Opt. Soc. Am. B 30(5), 1109 (2013)

    Article  ADS  Google Scholar 

  49. Faghihi, M.J., Tavassoly, M.K.: Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed kerr medium, and detuning effects. J. Opt. Soc. Am. B 30, 2810 (2013)

    Article  ADS  Google Scholar 

  50. Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B: At. Mol. Opt. Phys. 46, 145506 (2013)

    Article  ADS  Google Scholar 

  51. Hekmatara, H., Tavassoly, M.K.: Sub-poissonian statistics, population inversion and entropy squeezing of two two-level atoms interacting with a single-mode binomial field: intensity-dependent coupling regime. Opt. Commun. 319, 121 (2014)

    Article  ADS  Google Scholar 

  52. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entropy squeezing and atomic inversion in the k-photon JaynesCummings model in the presence of Stark shift and Kerr medium: A full nonlinear approach Chin. Phys. B. 23, 074203 (2014)

    Google Scholar 

  53. Abdalla, M.S., Obada, A.S.F., Abdel-Aty, M.: Von neumann entropy and phase distribution of two mode parametric amplifier interacting with a single atom. Ann. Phys. 318, 266 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Abdel-Aty, M., Abdalla, M.S., Sanders, B.C.: Tripartite entanglement dynamics for an atom interacting with nonlinear couplers. Phys. Lett. A 373, 315 (2009)

    Article  ADS  MATH  Google Scholar 

  55. Faghihi, M.J., Tavassoly, M.K., Bagheri, M.H.: Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Phys. 24, 045202 (2014)

    Article  ADS  Google Scholar 

  56. Faghihi, M.J., Tavassoly, M.K., Hatami, M.: Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Physica A 407, 100 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  57. Khalil, E.M., Abdalla, M.S., Obada, A.S.F.: Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type. Ann. Phys. 321, 421 (2006)

    Article  ADS  Google Scholar 

  58. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  59. Sanders, B.C.: Erratum: Entangled coherent states [phys. rev. a 45, 6811 (1992)]. Phys. Rev. A 46, 2966 (1992)

    Article  ADS  Google Scholar 

  60. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  61. Svozil, K.: Squeezed fermion states. Phys. Rev. Lett. 65, 3341 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. Jáuregui, R., Récamier, J.: Iterative Bogoliubov transformations and anharmonic oscillators. Phys. Rev. A 46, 2240 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  63. Schrieffer, J.R.: Theory of Superconductivity. WA Benjamin, New York (1964)

    MATH  Google Scholar 

  64. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  66. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  67. Vedral, V., Plenio, M.B., Jacobs, K., Knight, P.L.: Statistical inference, distinguishability of quantum states, and quantum entanglement. Phys. Rev. A 56, 4452 (1997)

    Article  ADS  Google Scholar 

  68. Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  69. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  70. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  71. Phoenix, S.J.D., Knight, P.L.: Periodicity, phase, and entropy in models of two-photon resonance. J. Opt. Soc. Am. B 7, 116 (1990)

    Article  ADS  Google Scholar 

  72. Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535 (1991)

    Article  ADS  Google Scholar 

  73. Childs, L.N.: A Concrete Introduction to Higher Algebra. Undergraduate Texts in Mathematics. Springer (2009)

  74. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  75. Rungta, P., Bužek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. DeVoe, R.G., Brewer, R.G.: Observation of superradiant and subradiant spontaneous emission of two trapped ions 76, 2049 (1996)

  77. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  78. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003)

    Article  ADS  Google Scholar 

  81. Akhtarshenas, S.J., Farsi, M.: Negativity as entanglement degree of the Jaynes-Cummings model. Phys. Scr. 75, 608 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghshahi, H.R., Tavassoly, M.K. & Faghihi, M.J. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes. Int J Theor Phys 54, 2839–2854 (2015). https://doi.org/10.1007/s10773-015-2520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2520-7

Keywords

Navigation