Skip to main content
Log in

The Chiral Phase Transition and Thermodynamic Properties in the Nambu-Jona-Lasinio Model Using the Midpoint Technique

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A midpoint method is introduced to calculate the chiral phase transition and thermodynamic properties in the Nambu-Jona-Lasinio (NJL) model with two flavors (u,d). The constituent quark mass, the pressure, the energy density, and the entropy are calculated in the mean-field approximation using the midpoint technique. The phase transition was found to be crossover for all values of bare quark mass. The effect of finite temperature and chemical potential on the thermodynamic properties is studied. A comparison with other models is presented. In addition, the advantages of the midpoint technique are discussed. In conclusion, the midpoint technique successfully predicts the phase transition and thermodynamic properties with a good accuracy for numerical integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schaefer, B.J., Pawlowski, J.M., Wambach, J.: Phys. Rev. 76, 074023 (2007)

    Google Scholar 

  2. Inagaki, T., Kimura, D., Kohyama, H., Kvinikhidze, A.: Phys. Rev. D 85, 076002 (2012). Phys. Rev. D 77, 116004(2008)

    Article  ADS  Google Scholar 

  3. Philipsen, O., Phys, Eur.: J. ST 152, 29 (2007)

    Google Scholar 

  4. Nambu, Y., Jona-Lasinio, G.: Phys. Rev. 122, 345 (1961). 124, 246, (1961)

    Article  ADS  Google Scholar 

  5. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108(5), 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Vogl, U., Weise, W.: Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  7. Klevansky, S.: Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Roessner, S., Ratti, C., Weise, W.: Phys. Rev. D 75, 034007 (2007)

    Article  ADS  Google Scholar 

  9. Mukherjee, S., Mustafa, M.G., Ray, R.: Phys. ReV. D 75, 094015 (2007)

    Article  ADS  Google Scholar 

  10. Sasaki, C., Friman, B., Redlich, K.: Phys. ReV. D 75, 074013 (2007)

    Article  ADS  Google Scholar 

  11. Klevansky, S.P.: Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pauli, W., Villars, F.: Rev. Mod. Phys. 21, 434 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Abu-Shady, M.: Int. J. Theor. Phys. 52, 1165 (2013)

    Article  MATH  Google Scholar 

  14. Abu-Shady, M.: Phys. Reser. Inter. 2014, 435023 (2014)

    Google Scholar 

  15. Abu-shady, M., Fract, J.: Calc. Appl. 3(s), 6 (2012)

    Google Scholar 

  16. Scavenius, O., Mocsy, A., Mishustin, I.N., Rischke, D.H.: Phys. ReV. C 64, 045202 (2001)

    Article  ADS  Google Scholar 

  17. Stetter, F.: J. Math. Comp 22, 66 (1968)

    Google Scholar 

  18. Bowman, E.S., Kapusta, J.I.: Phys. Rev. C 79, 015202 (2009)

    Article  ADS  Google Scholar 

  19. Chen, J.-W., Kohyama, H., Raha, U.: Phys. Rev. D 83, 094014 (2011)

    Article  ADS  Google Scholar 

  20. Berger, J., Christov, C.: Nucl. Phys. A 609, 537 (1996)

    Article  ADS  Google Scholar 

  21. Fujihara, T., Kimura, D., Inagaki, T., Kvinikhidze, A.: Phys. Rev. D 79, 096008 (2009)

    Article  ADS  Google Scholar 

  22. Mao, H., Jin, J., Huang, M.: J. Phys. G. 37, 035001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. T. Inagaki for his constructive suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abu-Shady.

Appendix

Appendix

In this Appendix, we write the detail of the calculation of (14) and the characteristic feature of the midpoint method. To calculate the integral

$$ M={{\int}_{a}^{b}}f(y)dy. $$
(A1)

We divide the interval [a,b] into N subintervals of length

$$ \triangle y=\frac{b\ -a}{N}, $$
(A2)

and the midpoint of the i th interval [y i ,y i+1] is

$$ A_{i}=a+\left(i+\frac{1}{2}\right)\triangle y{\kern7pt} ;i=0,1,2,...,N-1. $$
(A2)

The i the midpoint rectangle is the rectangle of height f(A i ) over the subinterval [y i ,y i+1]. This rectangle signed area

$$ f(A_{i})\triangle y. $$
(A3)

Thus, M is equal to the sum of the signed areas of these rectangles

$$\begin{array}{@{}rcl@{}} M &=&\sum\limits_{i=0}^{N-1}f(A_{i})\triangle y, \\ &=&\frac{b\ -a}{N}\sum\limits_{i=0}^{N-1}f(A_{i}). \end{array} $$
(A4)

Now, we apply the above steps on (12), we can rewrite (12) as follows

$$ \rho_{s}=I_{1}+I_{2}^{+\mu }+I_{2}^{-\mu } $$
(A5)

where

$$\begin{array}{@{}rcl@{}} I_{1}&=&-\frac{6M}{\pi^{2}}^{\prime }{{\int}_{0}^{1}}\frac{\ln^{2}ydy}{y\sqrt{ \ln^{2}y+M^{^{\prime }2}}},\\ I_{2}^{\pm \mu^{\prime }} &=&\frac{6M}{\pi^{2} }^{\prime }{{\int}_{0}^{1}}\frac{\ln^{2}ydy}{y\sqrt{\ln^{2}y+M^{^{\prime }2}}\left[ 1+\exp \left[\frac{\left(\sqrt{\ln^{2}y+M^{^{\prime }2}}\pm \mu^{\prime }\right)}{ T^{\prime }}\right]\right]}. \end{array} $$
(A6)

To calculate I 1, we determine \(\triangle y=\frac {1}{N}\) and the midpoint of the i th interval [y i ,y i+1]

$$ A_{i}=\left(\frac{i}{N}+\frac{1}{2N}\right){\kern7pt} where~ i=0,1,2,...,N-1. $$
(A7)

Using (A4), we can write the integral I 1

$$\begin{array}{@{}rcl@{}} I_{1} &=&-\frac{6M}{\pi^{2}}^{\prime }\sum\limits_{i=0}^{n-1}f_{1}(A_{i})\triangle y, \\ &=&-\frac{6M^{\prime }}{n\ \pi^{2}}\sum\limits_{i=0}^{n-1}\frac{\ln^{2}\left( A_{i}\right) }{A_{i}\sqrt{M^{^{\prime }2}+\ln^{2}\left( A_{i}\right) }}, \end{array} $$
(A8)

where

$$ A_{i}=\frac{i}{n}+\frac{1}{2n}. $$
(A9)

Similarly, we can write Integral \(I_{2}^{\pm \mu ^{\prime }}\) as follows

$$ I_{2}^{\pm \mu^{\prime }}=\frac{6M}{\pi^{2}}^{\prime }\sum\limits_{i=1}^{n-1}f_{2}(A_{i})\triangle y $$
(A10)

where

$$ f_{2}(A_{i})=\frac{\ln^{2}A_{i}}{A_{i}\sqrt{\ln^{2}A_{i}+M^{^{\prime }2}}\left[ 1+\exp \left[\frac{\left(\sqrt{\ln^{2}A_{i}+M^{^{\prime }2}}\pm \mu^{\prime }\right)}{ T^{\prime }}\right]\right]}, $$
(A11)

therefore, we write (A10) as follows

$$ I_{2}^{\pm \mu^{\prime }}=\frac{6M^{\prime }}{n\ \pi^{2}}\sum\limits_{i=0}^{n-1} \frac{\ln^{2}\left( A_{i}\right) }{A_{i}\sqrt{M^{^{\prime }2}+\ln^{2}\left( A_{i}\right) }}\left[\frac{1}{\left[\exp \left( \frac{1}{T^{\prime }}\left( \pm \mu^{\prime }+\sqrt{M^{^{\prime }2}+\ln^{2}\left( A_{i}\right) } \right) \right) +1\right]}\right]. $$
(A12)

Substituting by (A8) and (A12) into (A5) , we obtain the final form of ρ s as (14). The characteristic feature of the midpoint method that gives a good accuracy for numerical integrations in comparison with other numerical integrations that used in the calculations of thermodynamics properties in NJL model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Shady, M. The Chiral Phase Transition and Thermodynamic Properties in the Nambu-Jona-Lasinio Model Using the Midpoint Technique. Int J Theor Phys 54, 1530–1544 (2015). https://doi.org/10.1007/s10773-014-2352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2352-x

Keywords

Navigation