Skip to main content
Log in

Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we studied the cosmological application of the interacting Ricci Dark Energy (RDE) model in the framework of the scalar Gauss-Bonnet modified gravity model. We studied the properties of the reconstructed potential \(V\left (t \right )\), the Strong Energy Condition (SEC), the Weak Energy Condition (WEC) and the deceleration parameter q for three different models of scale factor, i.e. the emergent, the intermediate and the logamediate one. We obtained that \(V\left (t \right )\), for the emergent scenario, has a decreasing behavior, while, for the logamediate scenario, the potential start with an increasing behavior then, for later times, it shows a slowly decreasing behavior. Finally, for the intermediate scenario, the potential has an initial increasing behavior, then for a time of t≈1.2, it starts to decrease. We also found that both SEC and WEC are violated for all the three scale factors considered. Finally, studying the plots of q, we derived that an accelerated universe can be achieved for the three models of scale factor considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. de Bernardis, P. et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)

    ADS  Google Scholar 

  2. Perlmutter, S. et al.: Measurements of omega and lambda from 42: high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  3. Riess, A. G. et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  4. Seljak, U. et al.: Cosmological parameter analysis including SDSS Ly α forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 71, 103515 (2005)

    ADS  Google Scholar 

  5. Astier, P. et al.: The Supernova legacy survey: measurement of Ω m , ΩΛ and w from the first year data set. Astron. Astrophys. 447, 31 (2006)

    ADS  Google Scholar 

  6. Spergel, D.N. et al.: First-year wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    ADS  Google Scholar 

  7. Abazajian, K. et al.: The third data release of the sloan digital sky survey. Astron. J. 129, 1755 (2005)

    ADS  Google Scholar 

  8. Bennett, C.L. et al.: First-year wilkinson microwave anisotropy probe (wmap) observations: preliminary maps and basic results. Astrophys. J. 148, 1 (2003)

    ADS  Google Scholar 

  9. Komatsu, E. et al.: Five-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330 (2009)

    ADS  Google Scholar 

  10. Planck Collaboration, Ade, P.A.R., Aghanim, N., et al.: Planck 2013: results. XVI. Cosmological parameters. (2013) arXiv:1303.5076

  11. Tegmark, M. et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  12. Abazajian, K. et al.: The second data release of the sloan digital sky survey. Astron. J. 128, 502 (2004)

    ADS  Google Scholar 

  13. Adelman-McCarthy, J.K. et al.: The sixth data release of the sloan digital sky survey. Astrophys. J. Suppl. Ser. 175, 297 (2008)

    ADS  Google Scholar 

  14. Allen, S.W. et al.: Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. Roy. Astron. Soc. 353, 457 (2004)

    ADS  Google Scholar 

  15. Copeland, E.J., Sami, M., Tsujikawa, M.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  16. del Campo, S., Herrera, R., Pavon, D.: Interacting models may be key to solve the cosmic coincidence problem. J. Cosmol. Astropart. Phys. 0901, 020 (2009)

    ADS  Google Scholar 

  17. Leon, G., Saridakis, E.N.: Phantom dark energy with varying-mass dark matter particles: acceleration and cosmic coincidence problem. Phys. Lett. B 693, 1 (2010)

    ADS  Google Scholar 

  18. Jimenez, J.B., Maroto, A.L.: Avoiding the dark energy coincidence problem with a cosmic vector. AIP Conf. Proc. 1122, 107 (2009)

    ADS  Google Scholar 

  19. Berger, M.S., Shojae, H.: Interacting dark energy and the cosmic coincidence problem. Phys. Rev. D 73, 083528 (2006)

    ADS  Google Scholar 

  20. Zhang, X.: Coupled quintessence in a power-law case and the cosmic coincidence problem. Mod. Phys. Lett. A 20, 2575 (2005)

    ADS  Google Scholar 

  21. Griest, K.: Toward a possible solution to the cosmic coincidence problem. Phys. Rev. D 66, 123501 (2002)

    ADS  Google Scholar 

  22. Jamil, M., Rahaman, F.: On the resolution of cosmic coincidence problem and phantom crossing with triple interacting fluids. Eur. Phys. J. C 64, 97 (2009)

    ADS  Google Scholar 

  23. Jamil, M., Saridakis, E.N., Setare, M.R.: Thermodynamics of dark energy interacting with dark matter and radiation. Phys. Rev. D 81, 023007 (2010)

    ADS  Google Scholar 

  24. Jamil, M., Saridakis, E.N.: New agegraphic dark energy in Horava-Lifshitz cosmology. J. Cosmol. Astropart. Phys. 07, 028 (2010)

    ADS  MathSciNet  Google Scholar 

  25. Jamil, M., Farooq, M. U.: Interacting holographic dark energy with logarithmic correction. J. Cosmol. Astropart. Phys. 03, 001 (2010)

    ADS  Google Scholar 

  26. Jamil, M., Sheykhi, A., Farooq, M.U.: Thermodynamics of interacting entropy-corrected holographic dark energy in a non-flat frw universe. Int. J. Mod. Phys. D 19, 1831 (2010)

    ADS  MATH  Google Scholar 

  27. Peiris, H.V. et al.: First-year wilkinson microwave anisotropy probe (WMAP) observations: implications for inflation. Astrophys. J. Suppl. Ser. 148, 213 (2003)

    ADS  Google Scholar 

  28. Arkani-Hamed, N., Creminelli, P., Mukohyama, S., Zaldarriaga, M.: Ghost inflation. J. Cosmol. Astropart. Phys. 4, 1 (2004)

    ADS  MathSciNet  Google Scholar 

  29. Gasperini, M., Piazza, F., Veneziano, G.: Quintessence as a runaway dilaton. Phys. Rev. D 65, 023508 (2002)

    ADS  Google Scholar 

  30. Piazza, F., Tsujikawa, S.: Dilatonic ghost condensate as dark energy. J. Cosmol. Astropart. Phys. 7, 4 (2004)

    ADS  Google Scholar 

  31. Elizalde, E. et al.: Dark energy generated from a (super-) string effective action with higher-order curvature corrections and a dynamical dilaton. Euro. Phys. J. C 53, 447 (2008)

    ADS  Google Scholar 

  32. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)

    ADS  Google Scholar 

  33. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)

    ADS  Google Scholar 

  34. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  35. Armendariz-Picon, C., Damour, T., Mukhanov, V.: K-inflation. Phys. Lett. B 458, 209 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  36. Lambert, N.D., Sachs, I.: Tachyon dynamics and the effective action approximation. Phys. Rev. D 67, 025005 (2003)

    ADS  MathSciNet  Google Scholar 

  37. Sen, A.: Field theory of tachyon matter. Modern Phys. Lett. A 17, 1797 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  38. Ratra, B.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  39. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  40. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999)

    ADS  Google Scholar 

  41. Peebles, P.J.E., Ratra, B.: Cosmology with a time-variable cosmological ‘constant’. Astrophys. J. Lett. 325, L17 (1988)

    ADS  Google Scholar 

  42. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998)

    ADS  Google Scholar 

  43. Doran, M., Jaeckel, J.: Loop corrections to scalar quintessence potentials. Phys. Rev. D 66, 043519 (2002)

    ADS  Google Scholar 

  44. Sen, A.: Rolling tachyon. J. High Energy Phys. 4, 48 (2002)

    ADS  Google Scholar 

  45. Padmanabhan, T.: Accelerated expansion of the universe driven by tachyonic matter. Phys. Rev. D 66, 021301 (2002)

    ADS  Google Scholar 

  46. Padmanabhan, T., Choudhury, T.R.: Can the clustered dark matter and the smooth dark energy arise from the same scalar field? Phys. Rev. D 66, 081301 (2002)

    ADS  Google Scholar 

  47. Bagla, J.S., Jassal, H.K., Padmanabhan, T.: Cosmology with tachyon field as dark energy. Phys. Rev. D 67, 063504 (2003)

    ADS  Google Scholar 

  48. Shao, Y., Gui, Y.-X., Wang, W.: Parametrization of tachyon field. Modern Phys. Lett. A 22, 1175 (2007)

    ADS  MATH  Google Scholar 

  49. Calcagni, G., Liddle, A.R.: Tachyon dark energy models: dynamics and constraints. Phys. Rev. D 74, 043528 (2006)

    ADS  MathSciNet  Google Scholar 

  50. Copeland, E.J. et al.: What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 71, 043003 (2005)

    ADS  MathSciNet  Google Scholar 

  51. Sen, A.: Supersymmetric world-volume action for non-BPS D-branes. J. High Energy Phys. 10, 8 (1999)

    ADS  Google Scholar 

  52. Sen, A.: Tachyon matter. J. High Energy Phys. 7, 65 (2002)

    ADS  Google Scholar 

  53. Bergshoeff, E.A. et al.: T-duality and actions for non-BPS D-branes. J. High Energy Phys. 5, 9 (2000)

    ADS  MathSciNet  Google Scholar 

  54. Kluson, J.: Proposal for non-Bogomol’nyi-Prasad-Sommerfield D-brane action. Phys. Rev. D 62, 126003 (2000)

    ADS  MathSciNet  Google Scholar 

  55. Kutasov, D., Niarchos, V.: Tachyon effective actions in open string theory. Nucl. Phys. B 666, 56 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  56. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    ADS  Google Scholar 

  57. Nojiri, S., Odintsov, S.D.: de Sitter brane universe induced by phantom and quantum effects. Astrophys. J 565, 1 (2003)

    MATH  Google Scholar 

  58. Nojiri, S., Odintsov, S.D.: Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 562, 147 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  59. McInnes, B.: The dS/cft correspondence and the big smash. J. High Energy Phys. 0208, 029 (2002)

    ADS  MathSciNet  Google Scholar 

  60. Chimento, L.P., Lazkoz, R.: Constructing phantom cosmologies from standard scalar field universes. Phys. Rev. Lett. 91, 211301 (2003)

    ADS  Google Scholar 

  61. Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar-tensor theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000)

    ADS  Google Scholar 

  62. Gannouji, R., Polarski, D., Ranquet, A., Starobinsky, A.A.: Scalar tensor models of normal and phantom dark energy. J. Cosmol. Astropart. Phys. 0609, 016 (2006)

    ADS  Google Scholar 

  63. Anisimov, A.: B-inflation. J. Cosmol. Astropart. Phys. 6, 6 (2005)

    ADS  Google Scholar 

  64. Elizalde, E., Nojiri, S., Odintsov, S.D.: Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up. Phys. Rev. D 70, 043539 (2004)

    ADS  Google Scholar 

  65. Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D 71, 063004 (2005)

    ADS  Google Scholar 

  66. Feng, B., Wang, X.L., Zhang, X.M.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    ADS  Google Scholar 

  67. Guo, Z.K., Piao, Y.S., Zhang, X.M., Zhang, Y.Z.: Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 608, 177 (2005)

    ADS  Google Scholar 

  68. Cai, Y.F., Li, M.Z., Lu, J.X., Piao, Y.S., Qiu, T.T., Zhang, X.M.: A string-inspired quintom model of dark energy. Phys. Lett. B 651, 1 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  69. Cai, Y. F., Li, H., Piao, Y. S., Zhang, X.M.: Cosmic duality in quintom universe. Phys. Lett. B 646, 141 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  70. Zhao, W., Zhang, Y.: Quintom models with an equation of state crossing -1. Phys. Rev. D 73, 123509 (2006)

    ADS  Google Scholar 

  71. Shi, S.G., Piao, Y.S., Qiao, C.F.: Cosmological evolution of a tachyon-quintom model of dark energy. J. Cosmol. Astropart. Phys. 4, 27 (2009)

    ADS  Google Scholar 

  72. Mohseni Sadjadi, H., Alimohammadi, M.: Transition from quintessence to the phantom phase in the quintom model. Phys. Rev. D 74, 043506 (2006)

    ADS  Google Scholar 

  73. Setare, M.R., Saridakis, E.N.: Quintom cosmology with general potentials. Int. J. Mod. Phys. D 18, 549–557 (2009). arXiv:0807.3807

    ADS  MATH  MathSciNet  Google Scholar 

  74. Setare, M.R., Saridakis, E.N.: The quintom model with O(N) symmetry. J. Cosmol. Astropart. Phys. 0809, 026 (2008)

    ADS  Google Scholar 

  75. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    ADS  MATH  Google Scholar 

  76. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    ADS  Google Scholar 

  77. Setare, M.R.: Interacting generalized Chaplygin gas model in non-flat universe. Eur. Phys. J. C 52, 689 (2007)

    ADS  Google Scholar 

  78. Wei, H., Cai, R.G.: A new model of agegraphic dark energy. Phys. Lett. B 660, 113 (2008)

    ADS  Google Scholar 

  79. Cai, R.G.: A dark energy model characterized by the age of the universe. Phys. Lett. B 657, 228 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  80. Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  81. Cai, Y.F., Saridakis, E.N., Setare, M.R., Xia, J.Q.: Quintom cosmology: theoretical implications and observations. Phys. Rep. 493, 1 (2010)

    ADS  MathSciNet  Google Scholar 

  82. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  83. Myung, Y.S.: Black hole and holographic dark energy. Phys. Lett. B 649, 247 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  84. Myung, Y.S.: Origin of holographic dark energy models. Phys. Lett. B 671, 435 (2009)

    ADS  Google Scholar 

  85. Huang, Q.G., Li, M.: The holographic dark energy in a non-flat universe. J. Cosmol. Astropart. Phys. 8, 13 (2004)

    ADS  Google Scholar 

  86. ’t Hooft, G.: The black hole horizon as a dynamical system. Int. J. Mod. Phys. D 15, 1587 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  87. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  88. Bigatti, D., Susskind, L.: TASI lectures on the holographic principle. In Strings, Branes and Gravity: TASI 1999, eds. J. Harvey, S. Kachru and E. Silverstein, pp. 883–933. Singapore: World Scientific(2009). E-print: arXiv:hep-th/0002044

  89. Fischler, W., Susskind, L.: Holography and Cosmology. arXiv:hep-th/9806039(1998)

  90. Li, M., Li, X.D., Ma, Y., Zhang, X., Zhang, Z.: Planck constraints on holographic dark energy. J. Cosmol. Astropart. Phys. 9, 21 (2013)

    ADS  MathSciNet  Google Scholar 

  91. Xu, L.: Constraints on the holographic dark energy model from type Ia supernovae, WMAP7, baryon acoustic oscillation, and redshift-space distortion. Phys. Rev. D 87, 043525 (2013)

    ADS  Google Scholar 

  92. Duran, I., Parisi, L.: Holographic dark energy described at the Hubble length. Phys. Rev. D 85, 123538 (2012)

    ADS  Google Scholar 

  93. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  94. Guberina, B., Horvat, R., Nikolic, H.: Non-saturated holographic dark energy. J. Cosmol. Astropart. Phys. 1, 12 (2007)

    ADS  Google Scholar 

  95. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  96. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    ADS  MathSciNet  Google Scholar 

  97. Chen, B., Li, M., Wang, Y.: Inflation with holographic dark energy. Nucl. Phys. B 774, 256 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  98. Jamil, M., Saridakis, E.N., Setare, M. R.: Holographic dark energy with varying gravitational constant. Phys. Lett. B 679, 172 (2009)

    ADS  Google Scholar 

  99. Xu, L.: Holographic dark energy model with Hubble horizon as an IR cut-off. J. Cosmol. Astropart. Phys. 9, 16 (2009)

    ADS  Google Scholar 

  100. Sadjadi, H.M., Jamil, M.: Cosmic accelerated expansion and the entropy-corrected holographic dark energy. Gen. Relativ. Gravit. 43, 1759 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  101. Jamil, M., Farooq, M.U.: Interacting holographic viscous dark energy model. Int. J. Theor. Phys. 49, 42 (2010)

    MATH  MathSciNet  Google Scholar 

  102. Jamil, M., Farooq, M.U., Rashid, M.A.: Generalized holographic dark energy model. Eur. Phys. J. C 61, 471 (2009)

    ADS  Google Scholar 

  103. Jamil, M., Sheykhi, A.: Interacting entropy-corrected agegraphic-tachyon dark energy. Int. J. Theor. Phys. 50, 625 (2011)

    MATH  MathSciNet  Google Scholar 

  104. Wang, B., Gong, Y., Abdalla, E.: Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys. Lett. B 624, 141 (2005)

    ADS  Google Scholar 

  105. Wang, B., Lin, C.Y., Abdalla, E.: Constraints on the interacting holographic dark energy model. Phys. Lett. B 637, 357 (2006)

    ADS  Google Scholar 

  106. Wang, B., Lin, C.Y., Pavón, D., Abdalla, E.: Thermodynamical description of the interaction between holographic dark energy and dark matter. Phys. Lett. B 662, 1 (2008)

    ADS  Google Scholar 

  107. Sheykhi, A.: Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff. Classical and Quantum Gravity 27, 025007 (2010)

    ADS  MathSciNet  Google Scholar 

  108. Chattopadhyay, S., Debnath, U.: Holographic dark energy scenario and variable modified Chaplygin gas. Astrophys. Space Sci. 319, 183 (2009)

    ADS  Google Scholar 

  109. Feng, C., Wang, B., Gong, Y., Su, R.K: Testing the viability of the interacting holographic dark energy model by using combined observational constraints. J. Cosmol. Astropart. Phys. 9, 5 (2007)

    ADS  Google Scholar 

  110. Wang, B., Zang, J., Lin, C.Y., Abdalla, E., Micheletti, S.: Interacting dark energy and dark matter: observational constraints from cosmological parameters. Nucl. Phys. B 778, 69 (2007)

    ADS  Google Scholar 

  111. Wu, Q., Gong, U., Wang, A., Alcaniz, J.S.: Current constraints on interacting holographic dark energy. Phys. Lett. B 659, 34 (2008)

    ADS  Google Scholar 

  112. Li, M., Li, X.D., Wang, S., Wang, Y., Zhang, X.: Probing interaction and spatial curvature in the holographic dark energy model. J. Cosmol. Astropart. Phys. 12, 14 (2009)

    ADS  MATH  Google Scholar 

  113. Lu, J., Saridakis, E.N., Setare, M.R., Xu, L.: Observational constraints on holographic dark energy with varying gravita- tional constant. J. Cosmol. Astropart. Phys. 3, 31 (2010)

    ADS  Google Scholar 

  114. Zhang, X.: Heal the world: avoiding the cosmic doomsday in the holographic dark energy model. Phys. Lett. B 683, 81 (2010)

    ADS  Google Scholar 

  115. Nojiri, S., Odintsov, S.D.: Dark energy, inflation and dark matter from modified F(R) gravity. In: Problems of Modern Theoretical Physics, A Volume in honour of Prof. I.L. Buchbinder in the occasion of his 60th birthday, pp.266-285, TSPU Publishing, Tomsk. arXiv:hep-th/0807.0685(2008)

  116. Nojiri, S., Odintsov, S.D: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    MATH  MathSciNet  Google Scholar 

  117. El-Nabulsi, A.R.: Exact solution of a tachyon oscillating cosmology with a supergravity tracking potential. Eur. J. Phys. Plus 128, 55 (2013)

    Google Scholar 

  118. El-Nabulsi, A.R.: Accelerated Dilatonic-Brans-Dicke cyclic and non-singular universe from string theory. Res. Astron. Astrophys. 11, 1249 (2011)

    ADS  Google Scholar 

  119. El-Nabulsi, A.R.: Dark energy in five-dimensional Brans-Dicke cosmology with dimensional reduction. Res. Astron. Astrophys. 11(8), 888 (2011)

    ADS  Google Scholar 

  120. El-Nabulsi, A.R.: Dark energy from logarithmically modified gravity and deformed Coleman- Weinberg potential. Res. Astron. Astrophys. 7(11), 759 (2011)

    Google Scholar 

  121. El-Nabulsi, R.A.: Some late-time cosmological aspects of a Gauss-Bonnet gravity with non- minimal coupling la Brans-Dicke: solutions and perspectives. Can. J. Phys. 91, 300 (2013)

    ADS  Google Scholar 

  122. El-Nabulsi, R.A.: Crossing the phantom divide line from a generalized time-dependent Hubble parameter and its dynamical evolution a la Riccati. Can. J. Phys. 91, 623 (2013)

    ADS  Google Scholar 

  123. El-Nabulsi, R.A.: Chamelionic generalized Brans-Dicke cosmology. Eur. Phys. J. Plus 127, 23 (2012)

    Google Scholar 

  124. El-Nabulsi, A. R.: Living with phantoms fields in a sheet spacetime. Gen. Relativ. Gravit. 42, 1381 (2011)

    ADS  MathSciNet  Google Scholar 

  125. Capozziello, S., Francaviglia, M., Makarenko, A.N.: Higher-order Gauss-Bonnet cosmology. Astrophys. Space Sci. 349, 603–609 (2014)

    ADS  Google Scholar 

  126. Tsujikawa, S.: Lecture Notes in Physics, vol. 800, p 99. Springer, Berlin (2010)

    Google Scholar 

  127. Feng, C.J., Zhang, X.: Holographic Ricci dark energy in Randall-Sundrum braneworld: avoidance of big rip and steady state future. Phys. Lett. B 680, 399 (2009)

    ADS  Google Scholar 

  128. Wei, H.: Modified holographic dark energy. Nucl. Phys. B 819, 210 (2009)

    ADS  MATH  Google Scholar 

  129. Bisabr, Y.: Holographic dark energy model and scalar-tensor theories. Gen. Relativ. Gravit. 41, 305 (2009)

    ADS  MATH  MathSciNet  Google Scholar 

  130. Nozari, K., Rashidi, N.: Holographic dark energy from a modified gbig scenario. Int. J. Mod. Phys. D 19, 219 (2010)

    ADS  MATH  Google Scholar 

  131. Nozari, K., Rashidi, N.: A braneworld dark energy model with induced gravity and the Gauss- Bonnet effect. Int. J. Theor. Phys. 48, 2800 (2009)

    MATH  MathSciNet  Google Scholar 

  132. Setare, M.R.: The holographic dark energy in non-flat Brans Dicke cosmology. Phys. Lett. B 644, 99 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  133. Setare, M.R., Jamil, M.: Correspondence between entropy-corrected holographic and Gauss-Bonnet dark-energy models. Europhys. Lett. 92, 49003 (2010)

    ADS  Google Scholar 

  134. Setare, M.R.: Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field. Phys. Lett. B 690, 1 (2010)

    ADS  Google Scholar 

  135. Deffayet, C., Dvali, G., Gabadadze, G.: Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002)

    ADS  MathSciNet  Google Scholar 

  136. Sahni, V., Shtanov, Y.: Braneworld models of dark energy. J. Cosmol. Astropart. Phys. 11, 14 (2003)

    ADS  MathSciNet  Google Scholar 

  137. Ovalle, J., Linares, F., Pasqua, A., Sotomayor, A.: The role of exterior Weyl fluids on compact stellar structures in Randall- Sundrum gravity. Classical and Quantum Gravity 30, 175019 (2013)

    ADS  MathSciNet  Google Scholar 

  138. Pasqua, A., Chattopadhyay, S.: A study on the modified holographic Ricci dark energy in logarithmic f(T) gravity. Can. J. Phys. 91, 351 (2013)

    ADS  Google Scholar 

  139. Chattopadhyay, S., Pasqua, A.: Reconstruction of f(T) gravity from the holographic dark energy. Astrophys. Space Sci. 344, 269 (2013)

    ADS  Google Scholar 

  140. Bengochea, G. R., Ferraro, R.: Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009)

    ADS  Google Scholar 

  141. Linder, E.V.: Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 81, 127301 (2010). Erratum-ibid. D 82, 109902 (2010)

    ADS  Google Scholar 

  142. Li, B., Sotiriou, T.P., Barrow, J.D.: f(T) gravity and local Lorentz invariance. Phys. Rev. D 83, 064035 (2011)

    ADS  Google Scholar 

  143. Li, B., Sotiriou, T.P., Barrow, J.D.: Large-scale structure in f(T) gravity. Phys. Rev. D 83, 104017 (2011)

    ADS  Google Scholar 

  144. Li, M., Miao, R.X., Miao, Y.G.: Degrees of freedom of f(T) gravity. JHEP 1107, 108 (2011)

    ADS  MathSciNet  Google Scholar 

  145. Bamba, K., Geng, C.Q.: Thermodynamics of cosmological horizons in f(T) gravity. J. Cosmol. Astropart. Phys. 1111, 008 (2011)

    ADS  Google Scholar 

  146. Bamba, K., Geng, C.Q., Lee, C.C., Luo, L.W.: Equation of state for dark energy in f(T) gravity. J. Cosmol. Astropart. Phys. 1101, 021 (2011)

    ADS  Google Scholar 

  147. Ong, Y.C., Izumi, K., Nester, J.M., Chen, P.: Problems with propagation and time evolution in f(T) gravity. Phys. Rev. D 88, 024019 (2013). arXiv:gr-qc/1303.0993

  148. Capozziello, S., Fang, L. Z.: Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  MATH  Google Scholar 

  149. Sotiriou, T.P., Faraoni, V.: f(R) Theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  150. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    ADS  Google Scholar 

  151. Nojiri, S., Odintsov, S.D.: arXiv:hep-th/0807.0685

  152. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

  153. Jawad, A., Chattopadhyay, S., Pasqua, A.: A holographic reconstruction of the modified f(R) Horava-Lifshitz gravity with scale factor in power-law form. Astrophys. Space Sci. 346, 273 (2013)

    ADS  Google Scholar 

  154. Nojiri, S., Odintsov, S.D.: Modified gravity with ln r terms and cosmic acceleration. Gen. Relativ. Gravit. 36, 1765 (2004)

    ADS  MATH  MathSciNet  Google Scholar 

  155. Freese, K., Lewis, M.: Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating. Phys. Lett. B 540, 1 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  156. Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. arXiv:astro-ph/0303041

  157. Arkani-Hamed, N., Cheng, H.C., Luty, M.A., Mukohyama, S.: Ghost condensation and a consistent IR modification of gravity. JHEP 05, 043528 (2004)

    Google Scholar 

  158. Nojiri, S., Odintsov, S.D.: Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)

    ADS  MathSciNet  Google Scholar 

  159. Abdalla, M.C.B., Odintsov, S.D.: Letter to the Editor: consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday. Class. Qunt. Grav. 22, L35 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  160. Aghmohammadi, A., Saaidi, K., Abolhassani, M.R.: Spherical symmetric solution in f(R) model around charged black hole. Int. J. Theor. Phys. 49, 709 (2010)

    MATH  MathSciNet  Google Scholar 

  161. Capozziello, S., Nojiri, S., Odintsov, S.D., Troisi, A.: Cosmological viability of -gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135 (2006)

    ADS  Google Scholar 

  162. Appleby, S.A., Battye, R.A.: Do consistent F(R) models mimic general relativity plus Λ?. Phy. Lett. B 654, 7 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  163. Saaidi, K., Aghamohammadi, A.: Holographic dark energy and f(R) gravity. Phys. Scr. 83, 025902 (2011)

    ADS  Google Scholar 

  164. Easson, D.A.: Modified gravitational theories and cosmic acceleration. Int. Mod. Phys. A 19, 5343 (2004)

    ADS  MATH  Google Scholar 

  165. Myrzakulov, R.: Dark energy in F(R,T) gravity. arXiv:1205.5266

  166. Myrzakulov, R.: FRW cosmology in F(R, T) gravity. Eur. Phys. J. C 72, 2203 (2012)

    ADS  Google Scholar 

  167. Chattopadhyay, S.: A study on the interacting Ricci dark energy in f(R,T) gravity. Proc. Natl. Acad. Sci. India Sec. A: Phys. Sci. 84(1), 87–93 (2014)

    MATH  MathSciNet  Google Scholar 

  168. Alvarenga, F. G, de la Cruz-Dombriz, A., Houndjo, M.J.S., Rodrigues, M.E., Saez-Gomez, D.: Dynamics of scalar perturbations in f(R,T) gravity. Phys. Rev. D 87, 103526 (2013)

    ADS  Google Scholar 

  169. Dvali, G., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B 485, 208 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  170. Chattopadhyay, S., Pasqua, A.: Holographic DBI-essence dark energy via power-law solution of the scale factor. Int. J. Theor. Phys. 52, 3945 (2013)

    MATH  MathSciNet  Google Scholar 

  171. Pasqua, A., Chattopadhyay, S.: Logarithmic entropy-corrected holographic dark energy in Horava-Lifshitz cosmology with Granda-Oliveros cut-off. Astrophys. Space Sci. 348, 541 (2013)

    ADS  Google Scholar 

  172. Pasqua, A., Assaf, K., Aly, A.A.: Power law and logarithmic entropy corrected Ricci dark energy models in Brans-Dicke chameleon cosmology. Int. J. Theor. Phys. (2013). http://dx.doi.org/10.1007/s10773-013-1841-7

  173. Jamil, M., Hussain, I., Momeni, D.: Cosmic evolution in Brans-Dicke chameleon cosmology. Eur. Phys. J. Plus 126, 80 (2011)

    Google Scholar 

  174. Pasqua, A., Chattopadhyay, S.: New agegraphic dark energy model in chameleon Brans-Dicke cosmology for different forms of the scale factor. Astrophys. Space Sci. 348, 283 (2013). http://dx.doi.org/10.1007/s10509-013-1557-4

    ADS  Google Scholar 

  175. Rastkar, A.R., Setare, M.R., Darabi, F.: Phantom phase power-law solution in f(G) gravity. Astrophys. Space Sci. 337, 487 (2012)

    ADS  MATH  Google Scholar 

  176. Jawad, A., Chattopadhyay, S., Pasqua, A.: Reconstruction of f(G) gravity with the new agegraphic dark-energy model. Eur. Phys. J. Plus 128, 88 (2013)

    Google Scholar 

  177. Jawad, A., Pasqua, A., Chattopadhyay, S.: Correspondence between f(G) gravity and holographic dark energy via power- law solution. Astrophys. Space Sci. 344, 489 (2013)

    ADS  Google Scholar 

  178. Capozziello, S., Makarenko, A.N., Odintsov, S.D.: Gauss-Bonnet dark energy by Lagrange multipliers. Phys. Rev. D 87, 084037 (2013)

    ADS  Google Scholar 

  179. Granda, L.N.: Natural scaling for dark energy. Modern Phys. Lett. A 28, 50117 (2013)

    ADS  MathSciNet  Google Scholar 

  180. Granda, L.N.: Dark energy from scalar field with Gauss-Bonnet and non-minimal kinetic coupling. Modern Phys. Lett. A 27, 50018 (2012)

    ADS  Google Scholar 

  181. Wongjun, P.: Casimir Dark Energy, Stabilization of the Extra Dimensions and Gauss-Bonnet Term. (2013) arXiv:1308.4802

  182. El-Nabulsi, A.R.: Dark energy from “extended modified gravity” and Gauss-Bonnet invariant term. Astrophys. Space Sci. 327, 161 (2010)

    ADS  MATH  Google Scholar 

  183. El-Nabulsi, A.R.: Accelerated expansion of an anisotropic Brans-Dicke cosmology from nonlinear derivative interaction and Gauss-Bonnet invariant. Gen. Relativ. Gravit. 42, 1875 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  184. El-Nabulsi, A.R.: Modified Brans-Dicke scalar tensor theories with generalized stringy Gauss-Bonnet corrections. Astrophys. Space Sci. 327, 167 (2010)

    ADS  Google Scholar 

  185. Nojiri, S., Odintsov, S.D., Sasaki, M.: Gauss-Bonnet dark energy. Phys. Rev. D 71, 123509 (2005)

    ADS  Google Scholar 

  186. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relativ. 13, 3 (2010)

    ADS  Google Scholar 

  187. Setare, M. R., Saridakis, E. N.: Correspondence between holographic and Gauss Bonnet dark energy models. Phys. Lett. B 670, 1 (2008)

    ADS  Google Scholar 

  188. Setare, M. R.: Interacting holographic dark energy in the scalar gauss-bonnet gravity. Chin. Phys. Lett. 26, 029501 (2009)

    ADS  Google Scholar 

  189. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  190. Li, M.: A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    ADS  Google Scholar 

  191. Xu, L., Wang, Y.: Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets. J. Cosmol. Astropart. Phys. 06, 002 (2010)

    ADS  Google Scholar 

  192. Setare, M.R.: Interacting holographic dark energy model in non-flat universe. Phys. Lett. B 642, 1 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  193. Setare, M.R.: Bulk brane interaction and holographic dark energy. Phys. Lett. B 642, 421 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  194. Setare, M.R.: The holographic dark energy in non-flat Brans Dicke cosmology. Phys. Lett. B 644, 99 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  195. Setare, M.R., Zhang, J., Zhang, X.: Statefinder diagnosis in a non-flat universe and the holographic model of dark energy. J. Cosmol. Astropart. Phys. 3, 7 (2007)

    ADS  Google Scholar 

  196. Gao, C., Wu, F., Chen, X., Shen, Y.G.: Holographic dark energy model from Ricci scalar curvature. Phys. Rev. D 79, 043511 (2009)

    ADS  Google Scholar 

  197. Duran, I., Pavon, D.: Model of interacting holographic dark energy at the Ricci scale. Phys. Rev. D 83, 023504 (2011)

    ADS  Google Scholar 

  198. Cai, R.G., Hu, B., Zhang, Y.: Holography, UV/IR relation, causal entropy bound, and dark energy. Commun. Theor. Phys. 51, 954 (2009)

    ADS  MATH  Google Scholar 

  199. Feng, C.J.: Statefinder diagnosis for Ricci dark energy. Phys. Lett. B 670, 231 (2008)

    ADS  Google Scholar 

  200. Feng, C.J.: Reconstructing f(R) theory from Ricci dark energy. Phys. Lett. B 676, 168 (2009)

    ADS  Google Scholar 

  201. Feng, C. J.: Reconstructing quintom from Ricci dark energy. Phys. Lett. B 672, 94 (2009)

    ADS  Google Scholar 

  202. Feng, C.J., Li, X.-Z.: Viscous Ricci dark energy. Phys. Lett. B 680, 355 (2009)

    ADS  MathSciNet  Google Scholar 

  203. Pasqua, A., Jamil, M., Myrzakulov, R., Majeed, B.: Power-law entropy-corrected Ricci dark energy and dynamics of scalar fields. Phys. Scr. 86, 045004 (2012)

    ADS  Google Scholar 

  204. Pasqua, A., Khodam-Mohammadi, A., Jamil, M., Myrzakulov, R.: Interacting Ricci dark energy with logarithmic correction. Astrophys. Space Sci. 340, 199 (2012)

    ADS  MATH  Google Scholar 

  205. Pasqua, A., Khomenko, I.: Interacting Ricci logarithmic entropy-corrected holographic dark energy in Brans-Dicke cosmology. Int. J. Theor. Phys. 52, 3981 (2013)

    MATH  MathSciNet  Google Scholar 

  206. Pasqua, A.: Power-law and logarithmic entropy-corrected Ricci viscous dark energy and dynamics of scalar fields. Astrophys. Space Sci. 346, 531 (2013)

    ADS  MATH  Google Scholar 

  207. El-Nabulsi, A.R.: Effective cosmology a la Brans-Dicke with a non-minimally coupling massive inflaton field interacting with minimally coupling massless field. Braz. J. Phys. 40(3), 273 (2010)

    Google Scholar 

  208. Kim, K.Y., Lee, H.W., Myung, Y.S.: On the Ricci dark energy model. Gen. Relativ. Gravit. 43, 1095 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  209. Ghate, H.R.: Statefinder diagnostic for binary mixture of anisotropic dark energy and perfect fluid in bianchi type IX universe. IOSR Journal of Mathematics (IOSR-JM). e-ISSN:2778-5778

  210. El Nabulsi, A.R.: Five-dimensional Brans-Dicke M**1: x R**3: x S**1: cosmology with chameleon scalar field. Astrophys. Space Sci. 327, 155 (2010)

    ADS  MATH  Google Scholar 

  211. Granda, L.N.: Late time cosmological scenarios from scalar field with Gauss Bonnet and non-minimal kinetic couplings. Int. J. Theor. Phys. 51, 2813 (2012)

    MATH  Google Scholar 

  212. El-Nabulsi, R.A.: Accelerated D-dimensional compactified universe in Gauss Bonnet dilatonic scalar gravity from d-brane/m-theory. Chin. Phys. Lett. 25, 2785 (2008)

    ADS  Google Scholar 

  213. Gibbons, G.W.: Cosmological evolution of the rolling tachyon. Phys. Lett. B 537, 1 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  214. Debnath, U.: Emergent universe and the phantom tachyon model. Classical and Quantum Gravity 25, 205019 (2008)

    ADS  MathSciNet  Google Scholar 

  215. Debnath, U., Chattopadhyay, S., Jamil, M.: Fractional action cosmology: some dark energy models in emergent, logamediate, and intermediate scenarios of the universe. J. Theor. Appl. Phys. 7, 25 (2013)

    ADS  Google Scholar 

  216. Ghosh, R., Chattopadhyay, S., Debnath, U.: A dark energy model with generalized uncertainty principle in the emergent, intermediate and logamediate scenarios of the universe. Int. J. Theor. Phys. 51, 589 (2012)

    MATH  Google Scholar 

  217. Mukherjee, S., Paul, B.C., Dadhich, N.K., Maharaj, S.D., Beesham, A.: Emergent universe with exotic matter. Classical and Quantum Gravity 23, 6927 (2006)

    ADS  MATH  MathSciNet  Google Scholar 

  218. del Campo, S., Herrera, R., Labraña, P.: Emergent universe in a Jordan Brans Dicke theory. J. Cosmol. Astropart. Phys. 11, 30 (2007)

    ADS  Google Scholar 

  219. Paul, B.C., Thakur, P., Ghose, S.: Constraints on exotic matter needed for an emergent universe. Mon. Not. R. Astron. Soc. 407, 415 (2010)

    ADS  Google Scholar 

  220. Barrow, J.D., Nunes, N.J.: Dynamics of logamediate inflation. Phys. Rev. D 76, 043501 (2007)

    ADS  Google Scholar 

  221. Khatua, P.B., Debnath, U.: Role of chameleon field in accelerating universe. Astrophys. Space Sci. 326, 53 (2010)

    ADS  MATH  Google Scholar 

  222. Barrow, J.D., Liddle, A.R.: Perturbation spectra from intermediate inflation. Phys. Rev. D 47, 5219 (1993)

    ADS  Google Scholar 

  223. Praseetha, P., Mathew, T.K.: Interacting modified holographic Ricci dark energy model and statefinder diagnosis in flat universe. arXiv:1309.3136 (2013)

Download references

Acknowledgements

Supportive comments from the reviewers are thankfully acknowledged by the authors. The second author acknowledges financial support from the Department of Science and Technology, Government of India under Project Grant No. SR/FTP/PS-167/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pasqua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasqua, A., Chattopadhyay, S., Khurshudyan, M. et al. Behavior of Holographic Ricci Dark Energy in Scalar Gauss-Bonnet Gravity for Different Choices of the Scale Factor. Int J Theor Phys 53, 2988–3013 (2014). https://doi.org/10.1007/s10773-014-2096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2096-7

Keywords

Navigation