Skip to main content
Log in

An optimized iterative clustering framework for recognizing speech

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In the recent years, many research methodologies are proposed to recognize the spoken language and translate them to text. In this paper, we propose a novel iterative clustering algorithm that makes use of the translated text and reduces error in it. The proposed methodology involves three steps executed over many iterations, namely: (1) unknown word probability assignment, (2) multi-probability normalization, and (3) probability filtering. In the first case, each iteration learns the unknown words from previous iterations and assigns a new probability to the unknown words based on the temporary results obtained in the previous iteration. This process continues until there are no unknown words left. The second case involves normalization of multiple probabilities assigned to a single word by considering neighbour word probabilities. The last step is to eliminate probabilities below the threshold, which ensures the reduction of noise. We measure the quality of clustering with many real-world benchmark datasets. Results show that our optimized algorithm produces more accurate clustering compared to other clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sureshkumar Nagarajan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanivinayagam, A., Nagarajan, S. An optimized iterative clustering framework for recognizing speech. Int J Speech Technol 23, 767–777 (2020). https://doi.org/10.1007/s10772-020-09728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-020-09728-5

Keywords

Navigation