Skip to main content
Log in

An Analysis of the Critical Region of Multiparameter Equations of State

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, two classes of defects with multiparameter equations of state are investigated. In the first, it is shown that the critical point provided by equation of state developers often does not exactly meet the criticality conditions based on the first two density derivatives of the pressure being zero at the critical point. Based on the more accurate locations of the critical points given in the first part, the scaling of the densities along the binodal and spinodal in the critical region are investigated, and we find that the vast majority of equations have reasonable behavior but a few do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

In order to ensure reproducibility of our results, the supplementary information includes: A table of all the numerical critical points obtained; The orthobaric and spinodal scaling curves for all EOS in REFPROP 10.0. The corresponding author can be contacted for a copy of the scripts used to generate the figures

References

  1. R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)

    Book  Google Scholar 

  2. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002). https://doi.org/10.1063/1.1461829

    Article  ADS  Google Scholar 

  3. I.H. Bell, U.K. Deiters, A.M.M. Leal, Ind. Eng. Chem. Res. 61(17), 6010 (2022). https://doi.org/10.1021/acs.iecr.2c00237

    Article  Google Scholar 

  4. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. http://www.nist.gov/srd/nist23.cfm (2018). https://doi.org/10.18434/T4/1502528

  5. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Ind. Eng. Chem. Res. 53(6), 2498 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

  6. R. Span, R. Beckmüller, S. Hielscher, A. Jäger, E. Mickoleit, T. Neumann, S. Pohl, B. Semrau, M. Thol. TREND. Thermodynamic Reference and Engineering Data 5.0 (2020)

  7. I.H. Bell, U.K. Deiters, Ind. Eng. Chem. Res. 60(27), 9983 (2021). https://doi.org/10.1021/acs.iecr.1c00847

    Article  Google Scholar 

  8. M. Thol, L. Piazza, R. Span, Int. J. Thermophys. 35(5), 783 (2014). https://doi.org/10.1007/s10765-014-1633-1

    Article  ADS  Google Scholar 

  9. R. Tillner-Roth, H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994). https://doi.org/10.1063/1.555958

    Article  ADS  Google Scholar 

  10. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000). https://doi.org/10.1063/1.1349047

    Article  ADS  Google Scholar 

  11. E.W. Lemmon, R. Akasaka, Int. J. Thermophys. 43(8), 19 (2022). https://doi.org/10.1007/s10765-022-03015-y

    Article  Google Scholar 

  12. S.C. Greer, M.R. Moldover, Annu. Rev. Phys. Chem. 32, 233 (1981). https://doi.org/10.1146/annurev.pc.32.100181.001313

    Article  ADS  Google Scholar 

  13. M. Ley-Koo, M.S. Green, Phys. Rev. A 23, 2650 (1981). https://doi.org/10.1103/PhysRevA.23.2650

    Article  ADS  Google Scholar 

  14. M.E. Fisher, Rev. Mod. Phys. 70, 653 (1998). https://doi.org/10.1103/RevModPhys.70.653

    Article  ADS  Google Scholar 

  15. F. Kos, D. Poland, D. Simmons-Duffin, A. Vichi, J. High Energy Phys. 2016, 36 (2016). https://doi.org/10.1007/JHEP08(2016)036

    Article  Google Scholar 

  16. J.M.H. Levelt Sengers, J. Straub, M. Vicentini-Missoni, J. Chem. Phys. 54(12), 5034 (1971). https://doi.org/10.1063/1.1674794

    Article  ADS  Google Scholar 

  17. J.M.H. Levelt Sengers, W.L. Greer, J.V. Sengers, J. Phys. Chem. Ref. Data 5(1), 1 (1976). https://doi.org/10.1063/1.555529

    Article  ADS  Google Scholar 

  18. K.S. Pitzer, J.C. Tanger IV., Chem. Phys. Lett. 156(4), 418 (1989). https://doi.org/10.1016/0009-2614(89)87120-9

    Article  ADS  Google Scholar 

  19. M.A. Anisimov, S.B. Kiselev, J.V. Sengers, S. Tang, Physica A 188(4), 487 (1992). https://doi.org/10.1016/0378-4371(92)90329-O

    Article  ADS  Google Scholar 

  20. M.A. Anisimov, A.A. Povodyrev, V.D. Kulikov, J.V. Sengers, Phys. Rev. Lett. 75, 3146 (1995). https://doi.org/10.1103/PhysRevLett.75.3146

    Article  ADS  Google Scholar 

  21. M. Thorade, A. Saadat, Environ. Earth Sci. 70, 3497 (2013). https://doi.org/10.1007/s12665-013-2394-z

    Article  ADS  Google Scholar 

  22. I.H. Bell, U.K. Deiters, AIChE J. 64, 2745 (2018). https://doi.org/10.1002/aic.16074

    Article  ADS  Google Scholar 

  23. U.K. Deiters, Fluid Phase Equilib. 447, 72 (2017). https://doi.org/10.1016/j.fluid.2017.03.022

    Article  Google Scholar 

  24. I.H. Bell, U.K. Deiters, A. Jäger, Ind. Eng. Chem. Res. 61(6), 2592 (2022). https://doi.org/10.1021/acs.iecr.1c04703

    Article  Google Scholar 

  25. U.K. Deiters, I.H. Bell, Ind. Eng. Chem. Res. 59(42), 19062 (2020). https://doi.org/10.1021/acs.iecr.0c03667

    Article  Google Scholar 

  26. I.H. Bell, U.K. Deiters, Ind. Eng. Chem. Res. 62(4), 1958 (2023). https://doi.org/10.1021/acs.iecr.2c02916

    Article  Google Scholar 

  27. C. Tegeler, R. Span, W. Wagner, J. Phys. Chem. Ref. Data 28, 779 (1999). https://doi.org/10.1063/1.556037

    Article  ADS  Google Scholar 

  28. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996). https://doi.org/10.1063/1.555991

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Ulrich Deiters for a discussion of the theory behind the critical scaling constraint.

Funding

None

Author information

Authors and Affiliations

Authors

Contributions

IB prepared the main manuscript text and figures and EL and AH provided editorial guidance. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ian H. Bell.

Ethics declarations

Conflict of interest

None

Ethical Approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution of the National Institute of Standards and Technology, not subject to copyright in the US.

Special Issue in Honor of Professor Roland Span’s 60th Birthday

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10,795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, I.H., Lemmon, E.W. & Harvey, A.H. An Analysis of the Critical Region of Multiparameter Equations of State. Int J Thermophys 44, 158 (2023). https://doi.org/10.1007/s10765-023-03261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03261-8

Navigation