Skip to main content
Log in

Model of Non-stationary Heat Transfer in a Supercritical Fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper continues the process of reconciling results obtained when investigating heat transfer in the supercritical liquid–vapor region inherent in stationary and fast processes. A relatively simple model of non-stationary heat transfer at the microscopic level in a non-idealized system is constructed. The model provides a possible explanation for the increase in the thermal resistance of a supercritical fluid (drop in heat conduction) at a not too great distance from the critical isobar on a scale of small characteristic times and sizes. The model is based on an explicit account of a significant decrease in thermal diffusivity when approaching the critical temperature of the substance. The simulation results are compared with experimental data on the rapid (lasting in units-tens of milliseconds) transfer of a compressed liquid to the supercritical temperature region along a supercritical isobar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.F. Vega, Supercrit. Fluids. 134, 41 (2018)

    Article  Google Scholar 

  2. T.J. Yoon, M.Y. Ha, W.B. Lee, Y.-W. Lee, J. Supercrit. Fluids. 130, 364 (2017)

    Article  Google Scholar 

  3. Y.E. Gorbaty, G.V. Bondarenko, Supercrit. Fluids. 14, 1 (1998)

    Article  Google Scholar 

  4. A.D. Sabirova, T.R. Bilalov, Russ. J. Phys. Chem. B 16, 1318 (2022). https://doi.org/10.1134/S1990793122080139

    Article  Google Scholar 

  5. N.G. Polikhronidi, R.G. Batyrova, A.M. Aliev, I.M. Abdulagatov, J. Therm. Sci. 28, 394 (2019).

    Article  Google Scholar 

  6. D. Beysens, Front Space Technol. 3, 876642 (2022). https://doi.org/10.3389/frspt.2022.876642

    Article  ADS  Google Scholar 

  7. V.V. Brazhkin, V.V. Ryzhov, J. Chem. Phys. 135, 084503 (2011)

    Article  ADS  Google Scholar 

  8. A. Gorbunov, E. Soboleva, Microgravity Sci. Technol. 32(1), 47 (2020).

    Article  ADS  Google Scholar 

  9. J.M.H.L. Sengers, Physica A 82, 319 (1976). https://doi.org/10.1016/0378-4371(76)90012-1

    Article  ADS  Google Scholar 

  10. J.V. Sengers, Int. J. Thermophys. 41, 117 (2020). https://doi.org/10.1007/s10765-020-02696-7

    Article  ADS  Google Scholar 

  11. P.L. Kirillov, G.P. Bogoslovskaya, Nucl. Energy Technol. 5, 67 (2019)

    Article  Google Scholar 

  12. I.L. Pioro, Supercritical-fluids thermophysical properties and heat transfer in power-engineering applications. In Advanced Supercritical Fluids Technologies; Chapter 1; Pioro, I.L., Ed.; (IntechOpen: London, UK, 2020), 1. https://doi.org/10.5772/intechopen.91474.

  13. J.D. Jackson, Nucl. Eng. Des. 264, 24 (2013). https://doi.org/10.1016/j.nucengdes.2012.09.040

    Article  Google Scholar 

  14. I.M. Abdulagatov, P.V. Skripov, Russ. J. Phys. Chem. B. 15(7), 1171 (2021). https://doi.org/10.1134/S1990793121070022

    Article  Google Scholar 

  15. A. Michels, J.V. Sengers, P.S. Van der Gulik, Physica. 28, 1216 (1962)

    Article  ADS  Google Scholar 

  16. A. Michels, J.V. Sengers, Physica 28, 1238 (1962). https://doi.org/10.1016/0031-8914(62)90136-2

    Article  ADS  Google Scholar 

  17. G.A. Olchowy, J.V. Sengers, Phys. Rev. Lett. 61, 15 (1988)

    Article  ADS  Google Scholar 

  18. R.A. Perkins, J.V. Sengers, I.M. Abdulagatov, M.L. Huber, Int. J. Thermophys. 34, 191 (2013)

    Article  ADS  Google Scholar 

  19. R.A. Perkins, H.M. Roder, D.G. Friend, C.A. Nieto de Castro, Physica A 173, 332 (1991)

    Article  ADS  Google Scholar 

  20. L. Chen, Thermal-mechanical effects and near-critical fluid dynamic behaviors in micro-scale, in Handbook of Research on Advancements in Supercritical Fluids Applications for Sustainable Energy Systems, ed. by L. Chen (IGI Global, 2021), Ch. 3, p. 55. https://doi.org/10.4018/978-1-7998-5796-9.ch003

  21. DYu. Ivanov, Critical Behavior of Nonideal Systems (Wiley, Weinheim, 2008)

    Book  Google Scholar 

  22. S.B. Rutin, A.A. Igolnikov, P.V. Skripov, A.I.P. Conf, AIP Conf. Proc. 2466, 030022 (2022). https://doi.org/10.1063/5.0088875

    Article  Google Scholar 

  23. P.V. Skripov, S.B. Rutin, Int. J. Thermophys. 42, 110 (2021). https://doi.org/10.1007/s10765-021-02869-y

    Article  ADS  Google Scholar 

  24. S.B. Rutin, A.A. Igolnikov, P.V. Skripov, Appl. Thermal Eng. 201, 117740 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117740

    Article  Google Scholar 

  25. Ya.B. Zel’dovich, Sov. Phys. JETP 53, 1101 (1981).

  26. S.B. Rutin, P.V. Skripov, High Temp. 59, 245 (2021). https://doi.org/10.1134/S0018151X21010120

  27. W. Wagner, A. Pruβb, J. Phys. Chem. Ref. Data 31, 387 (2002). https://doi.org/10.1063/1.1461829

    Article  ADS  Google Scholar 

  28. A. Onuki, H. Hao, R.A. Ferrell, Phys. Rev. A 41, 2256(R) (1990). https://doi.org/10.1103/PhysRevA.41.2256

    Article  ADS  Google Scholar 

  29. Y. Garrabos, P. Carles, B. Zappoli, Phys. Rev. E 57, 5665 (1998). https://doi.org/10.1103/PhysRevE.57.5665

    Article  ADS  Google Scholar 

  30. P.V. Skripov, A.A. Igolnikov, S.B. Rutin, A.V. Melkikh, Int. J. Heat Mass Transf. 184, 122290 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2021.122290

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (Project No. 19-19-00115-P).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in preparing and reviewing this manuscript. AM, PS, and SR wrote the main manuscript text, AM prepared Figs. 4–7, SR prepared Figs. 1–3. All authors reviewed the manuscript.

Corresponding author

Correspondence to P. V. Skripov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkikh, A.V., Rutin, S.B. & Skripov, P.V. Model of Non-stationary Heat Transfer in a Supercritical Fluid. Int J Thermophys 44, 89 (2023). https://doi.org/10.1007/s10765-023-03201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03201-6

Keywords

Navigation