Skip to main content

Advertisement

Log in

Density and Viscosity Measurements of n-Dodecane and Carbon Dioxide + n-Dodecane at Temperatures from (298 to 548) K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A vibrating-wire apparatus was used to measure liquid density and viscosity simultaneously under high-temperature conditions. Densities and viscosities were measured along 11 isotherms at temperatures from (298.15 to 548.15) K and pressures up to 10 MPa for n-dodecane, and over a temperature range of (303.15 to 548.15) K and at equilibrium pressures up to about 6 MPa for carbon dioxide + n-dodecane. The estimated combined expanded uncertainties are 0.24 % for density and 2.2 % for viscosity with a confidence level of 0.95 (k = 2). In addition, experimental density and viscosity data were correlated with the modified Tait equation and Tait–Andrade equation, respectively, and comparisons with literature data were made. With regard to n-dodecane, the equations present both literature data and our experimental results with deviations almost within 0.2 % for density, and 3.0 % for viscosity. For simplicity, the experimental data of carbon dioxide + n-dodecane were correlated using these two Tait-like equations directly without considering the mole fraction of CO2. Both correlations describe our measured data of carbon dioxide + n-dodecane almost within 0.2 % for density and 1 % for viscosity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data are available from the corresponding author upon reasonable request.

References

  1. Z. Teimouri, N. Abatzoglou, A.K. Dalai, Catalysts 11, 330 (2021)

    Article  Google Scholar 

  2. J. Van de Loosdrecht, F. Botes, I. Ciobica, A. Ferreira, P. Gibson, D. Moodley, A. Saib, J. Visagie, C. Weststrate, J. Niemantsverdriet, Comprehensive Inorganic Chemistry II: From Elements to Applications (Elsevier, Amsterdam, 2013), pp.525–557

    Book  Google Scholar 

  3. J. Jenčík, V. Hönig, M. Obergruber, J. Hájek, A. Vráblík, R. Černý, D. Schlehöfer, T. Herink, Materials 14, 3077 (2021)

    Article  ADS  Google Scholar 

  4. J. Yang, J. Wu, S. Bi, J. Chem. Eng. Data 66, 2615 (2021)

    Article  Google Scholar 

  5. J. Yang, J. Wu, J. Chem. Thermodyn. 170, 106782 (2022)

    Article  Google Scholar 

  6. Y. Fu, X. Meng, X. Liang, J. Wu, J. Chem. Thermodyn. 152, 106263 (2021)

    Article  Google Scholar 

  7. Y. Fu, X. Meng, X. Liang, J. Wu, J. Chem. Eng. Data 66, 712 (2021)

    Article  Google Scholar 

  8. J. Cui, J. Wu, S. Bi, Fluid Phase Equilib. 534, 112951 (2021)

    Article  Google Scholar 

  9. J. Cui, S. Bi, A.P. Fröba, J. Wu, J. Chem. Thermodyn. 152, 106266 (2021)

    Article  Google Scholar 

  10. C. Cumicheo, M.Á. Cartes, H. Segura, E.A. Müller, A. Mejía, Fluid Phase Equilib. 380, 82 (2014)

    Article  Google Scholar 

  11. Y. Zhang, Z. Liu, W. Liu, J. Zhao, M. Yang, Y. Liu, D. Wang, Y. Song, J. Chem. Eng. Data 59, 3668 (2014)

    Article  Google Scholar 

  12. J. Zambrano, F.V. Gómez-Soto, D. Lozano-Martín, M.C. Martín, J.J. Segovia, J. Supercrit. Fluids 110, 103 (2016)

    Article  Google Scholar 

  13. J.-P. Bazile, D. Nasri, A.W. Saley Hamani, G. Galliero, J.-L. Daridon, J. Chem. Eng. Data 64, 3187 (2019)

    Article  Google Scholar 

  14. F.F. Czubinski, C.J. Noriega Sanchez, A.K. da Silva, M.A. Marcelino Neto, J.R. Barbosa Jr., J. Chem. Eng. Data 64, 3375 (2019)

    Article  Google Scholar 

  15. T. Retsina, S.M. Richardson, W.A. Wakeham, Flow Turbul. Combust. 43, 127 (1986)

    Google Scholar 

  16. T. Retsina, S.M. Richardson, W.A. Wakeham, Flow Turbul. Combust. 43, 325 (1987)

    Google Scholar 

  17. A. Pádua, J. Fareleira, J. Calado, W. Wakeham, Int. J. Thermophys. 17, 781 (1996)

    Article  ADS  Google Scholar 

  18. F. Ciotta, J.P.M. Trusler, J. Chem. Eng. Data 55, 2195 (2010)

    Article  Google Scholar 

  19. M. Mohammed, F. Ciotta, J.M. Trusler, J. Chem. Eng. Data 62, 422 (2017)

    Article  Google Scholar 

  20. X. Meng, P. Zheng, J. Wu, Z. Liu, Fluid Phase Equilib. 271, 1 (2008)

    Article  Google Scholar 

  21. X. Meng, P. Zheng, J. Wu, Z. Liu, J. Chem. Eng. Data 53, 1474 (2008)

    Article  Google Scholar 

  22. P. Zheng, X. Meng, J. Wu, Z. Liu, Int. J. Thermophys. 29, 1244 (2008)

    Article  ADS  Google Scholar 

  23. X. Meng, J. Wu, Z. Liu, J. Chem. Eng. Data 54, 2353 (2009)

    Article  Google Scholar 

  24. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Article  Google Scholar 

  25. S. Avgeri, M.J. Assael, M.L. Huber, R.A. Perkins, J. Phys. Chem. Ref. Data 44, 033101 (2015)

    Article  ADS  Google Scholar 

  26. Y.S. Touloukian, R. Kirby, R. Taylor, P. Desai, Thermophysical Properties of Matter: Thermal Expansion-Metallic Elements and Alloys (Plenum Publishing, New York, 1975)

    Google Scholar 

  27. J. Yang, Investigation of Solubility and Interfacial Tension of Long-Chain Alkanes with Dissolved Carbon Dioxide and Nitrogen at Elevated Temperatures in Fischer-Tropsch Synthesis (Xi’an Jiaotong University, Xi’an 2022)

  28. J.H. Dymond, J. Robertson, J.D. Isdale, J. Chem. Thermodyn. 14, 51 (1982)

    Article  Google Scholar 

  29. J.H. Dymond, J. Robertson, J.D. Isdale, Int. J. Thermophys. 2, 133 (1981)

    Article  ADS  Google Scholar 

  30. P. Snyder, J. Winnick, in Proceedings of the 5th Symposium on Thermophysical Properties, 1970 (1970), pp. 115–129

  31. R. Landau, A. Wuerflinger, Ber. Bunsenges. Phys. Chem. 84, 895 (1980)

    Article  Google Scholar 

  32. Y. Tanaka, H. Hosokawa, H. Kubota, T. Makita, Int. J. Thermophys. 12, 245 (1991)

    Article  ADS  Google Scholar 

  33. P. Gouel, Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 2, 211 (1978)

    Google Scholar 

  34. D. Caudwell, J. Trusler, V. Vesovic, W. Wakeham, Int. J. Thermophys. 25, 1339 (2004)

    Article  ADS  Google Scholar 

  35. R.W. Dornte, C.P. Smyth, J. Am. Chem. Soc. 52, 3546 (1930)

    Article  Google Scholar 

  36. W.G. Cutler, R. McMickle, W. Webb, R.W. Schiessler, J. Chem. Phys. 29, 727 (1958)

    Article  ADS  Google Scholar 

  37. B. Knapstad, P.A. Skjoelsvik, H.A. Oeye, J. Chem. Eng. Data 36, 84 (1991)

    Article  Google Scholar 

  38. O. Elizalde-Solis, L.A. Galicia-Luna, L.E. Camacho-Camacho, Fluid Phase Equilib. 259, 23 (2007)

    Article  Google Scholar 

  39. T. Regueira, W.-D. Yan, E.H. Stenby, J. Chem. Eng. Data 60, 3631 (2015)

    Article  Google Scholar 

  40. X. Cheng, Y. Dai, J. Zhao, J. Wu, H. Sun, Y. Guo, W. Fang, J. Chem. Eng. Data 62, 2330 (2017)

    Article  Google Scholar 

  41. A. Pimentel-Rodas, L.A. Galicia-Luna, J.J. Castro-Arellano, J. Chem. Eng. Data 62, 3946 (2017)

    Article  Google Scholar 

  42. J. Zhao, J. Wu, Y. Dai, X. Cheng, H. Sun, Y. Guo, W. Fang, J. Chem. Eng. Data 62, 643 (2017)

    Article  Google Scholar 

  43. G. Campos-Gómez, G.A. Iglesias-Silva, Int. J. Thermophys. 43, 1 (2022)

    Article  Google Scholar 

  44. J.L. Valencia, D. González-Salgado, J. Troncoso, J.B. Peleteiro, E. Carballo, L. Romaní, J. Chem. Eng. Data 54, 904 (2009)

    Article  Google Scholar 

  45. E.W. Lemmon, M.L. Huber, Energy Fuels 18, 960 (2004)

    Article  Google Scholar 

  46. A. Keramidi, Y.L. Rastorguev, Izv. Vyssh. Uchebn. Zaved., Neft Gaz 108 (1970)

  47. D. Ducoulombier, H. Zhou, C. Boned, J. Peyrelasse, H. Saint-Guirons, P. Xans, J. Phys. Chem. 90, 1692 (1986)

    Article  Google Scholar 

  48. J. Zambrano, M. Sobrino, M.C. Martín, M.A. Villamañán, C.R. Chamorro, J.J. Segovia, J. Chem. Thermodyn. 96, 104 (2016)

    Article  Google Scholar 

  49. S. Feng, Z. Liu, Q. Bi, H. Pan, J. Chem. Eng. Data 63, 671 (2018)

    Article  Google Scholar 

  50. D.L. Hogenboom, W. Webb, J.A. Dixon, J. Chem. Phys. 46, 2586 (1967)

    Article  ADS  Google Scholar 

  51. B. Knapstad, P.A. Skjolsvik, H.A. Øye, J. Chem. Eng. Data 34, 37 (1989)

    Article  Google Scholar 

  52. T.M. Koller, T. Klein, C.D. Giraudet, J. Chen, A. Kalantar, G.P. van der Laan, M.H. Rausch, A.P. Fröba, J. Chem. Eng. Data 62, 3319 (2017)

    Article  Google Scholar 

  53. Y. Dai, W. Zhao, H. Sun, Y. Guo, W. Fang, J. Chem. Eng. Data 63, 4052 (2018)

    Article  Google Scholar 

  54. Q. Tian, H. Liu, J. Chem. Eng. Data 52, 892 (2007)

    Article  Google Scholar 

  55. T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 40, 632 (1995)

    Article  Google Scholar 

  56. H. Kashiwagi, T. Makita, Int. J. Thermophys. 3, 289 (1982)

    Article  ADS  Google Scholar 

  57. M.L. Huber, A. Laesecke, R.A. Perkins, Energy Fuels 18, 968 (2004)

    Article  Google Scholar 

  58. F. Ciotta, G. Maitland, M.G. Smietana, J.P.M. Trusler, V. Vesovic, J. Chem. Eng. Data 54, 2436 (2009)

    Article  Google Scholar 

  59. M. Kato, K. Aizawa, T. Kanahira, H. Tanaka, T. Muramatsu, T. Ozawa, B.C.Y. Lu, J. Jpn Pet. Inst. 35, 318 (1992)

    Article  Google Scholar 

  60. H. Tanaka, Y.T. Yamaki, M. Kato, J. Chem. Eng. Data 38, 386 (1993)

    Article  Google Scholar 

  61. H. Nourozieh, M. Kariznovi, J. Abedi, Fluid Phase Equilib. 337, 246 (2013)

    Article  Google Scholar 

  62. M. Kariznovi, H. Nourozieh, J. Abedi, Fluid Phase Equilib. 339, 105 (2013)

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51761135116 and 51976164).

Author information

Authors and Affiliations

Authors

Contributions

XL: Experiment, Writing—original draft; JY: Analysis, Writing—review and editing; XM: Supervision, Writing—review and editing; JW: Supervision, Writing—review and editing, Project administration.

Corresponding author

Correspondence to Jiangtao Wu.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Selected Papers of the 13th Asian Thermophysical Properties Conference.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Yang, J., Meng, X. et al. Density and Viscosity Measurements of n-Dodecane and Carbon Dioxide + n-Dodecane at Temperatures from (298 to 548) K. Int J Thermophys 44, 52 (2023). https://doi.org/10.1007/s10765-022-03148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03148-0

Keywords

Navigation