Skip to main content
Log in

Polarization-Sensitive Terahertz Bolometer Using Plasmonically-Heated Vanadium-Dioxide Beam

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We present an uncooled high-sensitivity bolometric terahertz detector by incorporating plasmonic absorbers and transducer beams made of phase changing materials. We present a comprehensive design parameter analysis of the bolometer device—from electromagnetic absorption to thermal and mechanical analysis. Our design integrates plasmonic absorber and vanadium dioxide (VO2) beams biased at transition temperature to achieve ultra-high temperature coefficient of resistance. The beams are positioned in proximity to plasmonic hot spots created by radiation absorption. Such integration simultaneously allows spectrum selectivity and tunability in radiation absorption across a wide band in the THz regime as well as high-sensitivity detection by a small-footprint device. The design additionally facilitates simultaneous sensing of intensity and polarization of incident radiation by utilizing polarization-dependent plasmonic field enhancement. We estimate a responsivity over 5 kV·W−1, noise equivalent power (NEP) below 12 pW, and normalized detectivity over 108 cm·Hz1/2·W−1 which are competitive to state-of-the-art THz bolometer designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data and materials used in this work can be made available upon request.

References

  1. M. Beruete, I. Jáuregui-López, Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 8(3), 1900721 (2020). https://doi.org/10.1002/adom.201900721

    Article  Google Scholar 

  2. D.F. Santavicca et al., Energy resolution of terahertz single-photon-sensitive bolometric detectors. Appl. Phys. Lett. 96(8), 083505 (2010). https://doi.org/10.1063/1.3336008

    Article  ADS  Google Scholar 

  3. J.W. Song et al., Bolometric terahertz detection in pinched-off quantum point contacts. Appl. Phys. Lett. 97(8), 083109 (2010). https://doi.org/10.1063/1.3475488

    Article  ADS  Google Scholar 

  4. M. Coppinger, N.A. Sustersic, J. Kolodzey, T.H. Allik, Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging. Opt. Eng. 50(5), 053206 (2011). https://doi.org/10.1117/1.3574066

    Article  ADS  Google Scholar 

  5. N. Oda, Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging. C. R. Phys. 11(7), 496–509 (2010). https://doi.org/10.1016/j.crhy.2010.05.001

    Article  ADS  Google Scholar 

  6. D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, J.-L. Coutaz, Broadband THz uncooled antenna-coupled microbolometer array—electromagnetic design, simulations and measurements. IEEE Trans. Terahertz Sci. Technol. 2(3), 299–305 (2012). https://doi.org/10.1109/TTHZ.2012.2188395

    Article  ADS  Google Scholar 

  7. N. Nemoto et al., High-sensitivity and broadband, real-time terahertz camera incorporating a micro-bolometer array with resonant cavity structure. IEEE Trans. Terahertz Sci. Technol. 6(2), 175–182 (2016). https://doi.org/10.1109/TTHZ.2015.2508010

    Article  ADS  Google Scholar 

  8. M.W. Khan, J.M. Sullivan, J. Lee, O. Boyraz, High sensitivity long-wave infrared detector design based on integrated plasmonic absorber and VO2 nanobeam. IEEE J. Quantum Electron. 57(4), 1–11 (2021). https://doi.org/10.1109/JQE.2021.3080287

    Article  Google Scholar 

  9. M.W. Khan et al., Selective and efficient infrared detection by plasmonically heated vanadium-dioxide nanowire, in Plasmonics: Design Materials, Fabrication, Characterization, and Applications XVIII. Sep 11462, 114622S (2020). https://doi.org/10.1117/12.2568971

    Article  Google Scholar 

  10. L.A.L. de Almeida, G.S. Deep, A.M.N. Lima, I.A. Khrebtov, V.G. Malyarov, H. Neff, Modeling and performance of vanadium–oxide transition edge microbolometers. Appl. Phys. Lett. 85(16), 3605–3607 (2004). https://doi.org/10.1063/1.1808890

    Article  ADS  Google Scholar 

  11. S. Chen, H. Ma, S. Xiang, X. Yi, Fabrication and performance of microbolometer arrays based on nanostructured vanadium oxide thin films. Smart Mater. Struct. 16(3), 696–700 (2007). https://doi.org/10.1088/0964-1726/16/3/016

    Article  ADS  Google Scholar 

  12. Z. Shao, X. Cao, H. Luo, P. Jin, Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 10(7), 581–605 (2018). https://doi.org/10.1038/s41427-018-0061-2

    Article  Google Scholar 

  13. Y. Xu, W. Huang, Q. Shi, Y. Zhang, L. Song, Y. Zhang, Synthesis and properties of Mo and W ions co-doped porous nano-structured VO2 films by sol–gel process. J. Sol-Gel Sci. Technol. 64(2), 493–499 (2012). https://doi.org/10.1007/s10971-012-2881-9

    Article  Google Scholar 

  14. Y. Wu et al., Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping. Sci. Rep. (2015). https://doi.org/10.1038/srep09328

    Article  Google Scholar 

  15. K. Shibuya, M. Kawasaki, Y. Tokura, Metal-insulator transition in epitaxial V1−xWxO2(0 ≤ x ≤ 0.33) thin films. Appl. Phys. Lett. 96(2), 022102 (2010). https://doi.org/10.1063/1.3291053

    Article  ADS  Google Scholar 

  16. N.C.J. van der Valk, W.A.M. van der Marel, P.C.M. Planken, Terahertz polarization imaging. Opt. Lett. 30(20), 2802–2804 (2005). https://doi.org/10.1364/OL.30.002802

    Article  ADS  Google Scholar 

  17. S. Katletz et al., Polarization sensitive terahertz imaging: detection of birefringence and optical axis. Opt. Express 20(21), 23025–23035 (2012). https://doi.org/10.1364/OE.20.023025

    Article  ADS  Google Scholar 

  18. F.J. González, J. Alda, J. Simón, J. Ginn, G. Boreman, The effect of metal dispersion on the resonance of antennas at infrared frequencies. Infrared Phys. Technol. 52(1), 48–51 (2009). https://doi.org/10.1016/j.infrared.2008.12.002

    Article  ADS  Google Scholar 

  19. P.D. Cunningham et al., Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials. J. Appl. Phys. 109(4), 043505 (2011). https://doi.org/10.1063/1.3549120

    Article  ADS  Google Scholar 

  20. F. Sanjuan, J. O. Tocho, Optical properties of silicon, sapphire, silica and glass in the Terahertz range, in Latin America Optics and Photonics Conference, Sao Sebastiao, 2012, p. LT4C.1. https://doi.org/10.1364/LAOP.2012.LT4C.1.

  21. F. Ling, Z. Zhong, R. Huang, B. Zhang, A broadband tunable terahertz negative refractive index metamaterial. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-28221-3

    Article  Google Scholar 

  22. E. Smith, Vanadium oxide microbolometers with patterned gold black or plasmonic resonant absorbers. Electron. Theses Diss. 2015. https://stars.library.ucf.edu/etd/1404

  23. Q. Zhao, M.W. Khan, S. Farzinazar, J. Lee, O. Boyraz, Plasmo-thermomechanical radiation detector with on-chip optical readout. Opt. Express 26(23), 29638–29650 (2018). https://doi.org/10.1364/OE.26.029638

    Article  ADS  Google Scholar 

  24. Q. Zhao, M. W. Khan, P. Sadri-Moshkenani, R. Regan, F. Capolino, O. Boyraz, Demonstration of a plasmo-thermomechanical radiation detector with Si3N4 waveguide optical readout circuit, in Conference on Lasers and Electro-Optics (2018), Paper JW2A.175, May 2018, p. JW2A.175. https://doi.org/10.1364/CLEO_AT.2018.JW2A.175.

  25. Q. Zhao, P. Sadri-Moshkenani, M.W. Khan, R. Torun, O. Boyraz, On-chip bimetallic plasmo-thermomechanical detectors for mid-infrared radiation. IEEE Photonics Technol. Lett. 29(17), 1459–1462 (2017). https://doi.org/10.1109/LPT.2017.2728373

    Article  ADS  Google Scholar 

  26. T. Kawakubo, K. Komeya, Static and cyclic fatigue behavior of a sintered silicon nitride at room temperature. J. Am. Ceram. Soc. 70(6), 400–405 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05659.x

    Article  Google Scholar 

  27. W.-H. Chuang, R.K. Fettig, R. Ghodssi, Nano-scale fatigue study of LPCVD silicon nitride thin films using a mechanical-amplifier actuator. J. Micromech. Microeng. 17(5), 938–944 (2007). https://doi.org/10.1088/0960-1317/17/5/013

    Article  ADS  Google Scholar 

  28. A. Rogalski, Infrared Detectors (CRC Press, Boca Raton, 2010)

    Google Scholar 

  29. V. Théry et al., Role of thermal strain in the metal-insulator and structural phase transition of epitaxial VO2 films. Phys. Rev. B 93(18), 184106 (2016). https://doi.org/10.1103/PhysRevB.93.184106

    Article  ADS  Google Scholar 

  30. C.D. Reintsema, E.N. Grossman, J.A. Koch, Improved VO2 microbolometers for infrared imaging: operation on the semiconducting-metallic phase transition with negative electrothermal feedback. Infrared Technol. Appl. XXV 3698, 190–200 (1999). https://doi.org/10.1117/12.354520

    Article  ADS  Google Scholar 

  31. L.A.L. de Almeida, G.S. Deep, A.M. Nogueira-Lima, H. Neff, Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector. Opt. Eng. 41(10), 2582–2588 (2002). https://doi.org/10.1117/1.1501095

    Article  ADS  Google Scholar 

  32. M. Romano et al., Broadband sub-terahertz camera based on photothermal conversion and IR thermography. J. Infrared Millim. Terahertz Waves 37(5), 448–461 (2016). https://doi.org/10.1007/s10762-015-0241-x

    Article  Google Scholar 

  33. N. Oda et al., Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region. J. Infrared Millim. Terahertz Waves 36(10), 947–960 (2015). https://doi.org/10.1007/s10762-015-0184-2

    Article  Google Scholar 

  34. L. Vicarelli, A. Tredicucci, A. Pitanti, Micromechanical bolometers for subterahertz detection at room temperature. ACS Photonics 9(2), 360–367 (2022). https://doi.org/10.1021/acsphotonics.1c01273

    Article  Google Scholar 

  35. D. Dufour et al., Review of terahertz technology development at INO. J. Infrared Millim. Terahertz Waves 36(10), 922–946 (2015). https://doi.org/10.1007/s10762-015-0181-5

    Article  Google Scholar 

  36. D. Jang, M. Kimbrue, Y.-J. Yoo, K.-Y. Kim, Spectral characterization of a microbolometer focal plane array at terahertz frequencies. IEEE Trans. Terahertz Sci. Technol. 9(2), 150–154 (2019). https://doi.org/10.1109/TTHZ.2019.2893573

    Article  ADS  Google Scholar 

  37. F. Simoens, J. Meilhan, Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 372(2012), 20130111 (2014). https://doi.org/10.1098/rsta.2013.0111

    Article  ADS  Google Scholar 

  38. R.C. Jones, Performance of detectors for visible and infrared radiation, in Advances in Electronics and Electron Physics, vol. 5, ed. by L. Marton (Academic Press, Cambridge, 1953), pp. 1–96

    Chapter  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MWK and OB conceived the idea. MWK wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ozdal Boyraz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.W., Boyraz, O. Polarization-Sensitive Terahertz Bolometer Using Plasmonically-Heated Vanadium-Dioxide Beam. Int J Thermophys 44, 9 (2023). https://doi.org/10.1007/s10765-022-03115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03115-9

Keywords

Navigation