Skip to main content
Log in

Thermodynamic Properties of Carbon Monoxide Using an Improved Hulburt–Hirschfelder Potential

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this work, an improved Hulburt–Hirschfelder (IHH) potential energy function (PEF) has been constructed with an extra adjustable parameter. Applying the determined IHH potential points to the one-dimension Schrödinger equation can yield the exact solution viz. the rovibrational energies, which are used for the calculations of internal partition function, molar heat capacity, Gibbs-free energy, entropy and enthalpy within the framework of the quantum statistical ensemble theory. Comprehensive comparisons for the ground electronic state of carbon monoxide show that the IHH potentials can get good approach in the asymptotic and the dissociation regions, and these thermodynamic properties (TP) determined by IHH model are supported by the good agreement with experimental data in a temperature range of \(T\le\) 6000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. J. McBride, M. J. Zehe, S. Gordon, NASA Tech. Paper 2002–211556 (2002)

  2. M. Capitelli, G. Colonna, D. Giordano, L. Marraffa, A. Casavola, P. Minnelli, D. Pagano, L.D. Pietanza, F. Taccogna, J. Spacecr. Rockets 42, 980 (2005)

    Article  ADS  Google Scholar 

  3. X.Q. Song, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 673, 50–55 (2017)

    Article  ADS  Google Scholar 

  4. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, R. Zeng, Chem. Eng. Sci. 183, 26–29 (2018)

    Article  Google Scholar 

  5. C.S. Jia, R. Zeng, X.L. Peng, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 1–4 (2018)

    Article  Google Scholar 

  6. M. Deng, C.S. Jia, Eur. Phys. J. Plus 133, 258 (2018)

    Article  Google Scholar 

  7. C.S. Jia, L.H. Zhang, X.L. Peng, J.X. Luo, Y.L. Zhao, J.Y. Liu, J.J. Guo, L.D. Tang, Chem. Eng. Sci. 202, 70–74 (2019)

    Article  Google Scholar 

  8. X.L. Peng, R. Jiang, C.S. Jia, L.H. Zhang, Y.L. Zhao, Chem. Eng. Sci. 190, 122–125 (2018)

    Article  Google Scholar 

  9. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57–60 (2018)

    Article  ADS  Google Scholar 

  10. B. Tang, Y.T. Wang, X.L. Peng, L.H. Zhang, C.S. Jia, J. Mol. Struct. 1199, 126958 (2020)

    Article  Google Scholar 

  11. J.F. Wang, X.L. Peng, L.H. Zhang, C.W. Wang, C.S. Jia, Chem. Phys. Lett. 686, 131–133 (2017)

    Article  ADS  Google Scholar 

  12. C.S. Jia, L.H. Zhang, C.W. Wang, Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  13. C.S. Jia, X.T. You, J.Y. Liu, L.H. Zhang, X.L. Peng, Y.T. Wang, L.S. Wei, Chem. Phys. Lett. 717, 16–20 (2019)

    Article  ADS  Google Scholar 

  14. K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Mol. Phys. 112, 127–141 (2014)

    Article  ADS  Google Scholar 

  15. M. Servatkhah, R. Khordad, A. Ghanbari, Int. J. Thermophys. 41, 37 (2020)

    Article  ADS  Google Scholar 

  16. M.L. Strekalov, Comput. Theor. Chem. 1202, 113337 (2021)

    Article  Google Scholar 

  17. E.S. Eyube, Mol. Phys. e2037774, 1–16 (2022)

    Google Scholar 

  18. R. Khordad, A. Avazpour, A. Ghanbari, Chem. Phys. 517, 30–35 (2019)

    Article  Google Scholar 

  19. Z. Qin, J.M. Zhao, L.H. Liu, J. Quant. Spectrosc. Ra. 210, 1–18 (2018)

    Article  ADS  Google Scholar 

  20. R.H. Liang, Y.M. Liu, F.Y. Li, Contrib. Plasma Phys. 61, e202100036 (2021)

    Article  Google Scholar 

  21. M. Buchowiecki, Chem. Phys. Lett. 692, 236–241 (2018)

    Article  ADS  Google Scholar 

  22. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Heliyon 6, e03738 (2020)

    Article  Google Scholar 

  23. C.O. Edet, U.S. Okorie, G. Osobonye, A.N. Ikot, G.J. Rampho, R. Sever, J. Math. Chem. 58, 989 (2020)

    Article  MathSciNet  Google Scholar 

  24. R. Horchania, H. Jelassi, Chem. Phys. 532, 110692 (2020)

    Article  Google Scholar 

  25. R. Horchania, H. Jelassi, Chem. Phys. Lett. 753, 137583 (2020)

    Article  Google Scholar 

  26. C.A. Onate, M.C. Onyeaju, U.S. Okorie, A.N. Ikot, Results Phys. 16, 102959 (2020)

    Article  Google Scholar 

  27. M. Habibinejad, R. Khordad, A. Ghanbari, Physica B 613, 412940 (2021)

    Article  Google Scholar 

  28. A. Hesam, H. Nikoofard, M. Sargolzaei, Chem. Phys. Lett. 764, 138276 (2021)

    Article  Google Scholar 

  29. E.S. Eyube, G.G. Nyam, P.P. Notani, Phys. Scr. 96, 125017 (2021)

    Article  ADS  Google Scholar 

  30. E.S. Eyube, B.M. Bitrus, H. Samaila, P.P. Notani, Int. J. Thermophys. 43, 55 (2022)

    Article  ADS  Google Scholar 

  31. Q.C. Fan, J. Jian, Z.X. Fan, J. Fu, H.D. Li, J. Ma, F. Xie, Spectrochim. Acta Part A 267, 120564 (2022)

    Article  Google Scholar 

  32. H.M. Hulburt, J.O. Hirschfelder, J. Chem. Phys. 9, 61–69 (1941)

    Article  ADS  Google Scholar 

  33. J.L. Dunham, Phys. Rev. 41, 721 (1932)

    Article  ADS  Google Scholar 

  34. R.J. Le Roy, J. Quant. Spectrosc. Radiat. Transfer 186, 167–178 (2017)

    Article  ADS  Google Scholar 

  35. F. Schwabl, Statistical Mechanics, 2nd edn. (Springer, Berlin, 2006)

    Book  MATH  Google Scholar 

  36. J.A. Coxon, P.G. Hajigeorgiou, J. Chem. Phys. 121, 2992–3008 (2004)

    Article  ADS  Google Scholar 

  37. P.M. Morse, Phys. Rev. 34, 57–64 (1929)

    Article  ADS  Google Scholar 

  38. R. Kȩpa, M. Ostrowska-Kopeć, I. Piotrowska, M. Zachwieja, R. Hakalla, W. Szajna, P. Kolek, J. Phys. B 47, 045101 (2014)

    Article  ADS  Google Scholar 

  39. R.R. Gamache, B. Vispoel, M. Rey, A. Nikitin, V. Tyuterev, O. Egorov, I.E. Gordon, V. Boudon, J. Quant. Spectrosc. Radiat. Transfer 271, 107713 (2021)

    Article  Google Scholar 

  40. National Institute of Standards and Technology (NIST), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, (2017) (http://webbook.nist.gov/chemistry/)

Download references

Acknowledgements

This work was supported by the Fund for the Program of Science and Technology of Sichuan Province of China (Grant No. 2021ZYD0050), the National Natural Science Foundation of China (Grant Nos. 61722507 and 11904295), and the Open Research Fund Program of the Collaborative Innovation Center of Extreme Optics (Grant No. KF2020003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qunchao Fan or Huidong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Wang, Y., Tian, H. et al. Thermodynamic Properties of Carbon Monoxide Using an Improved Hulburt–Hirschfelder Potential. Int J Thermophys 44, 22 (2023). https://doi.org/10.1007/s10765-022-03091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03091-0

Keywords

Navigation