Skip to main content
Log in

Experimental Study of Physical Properties and Impact Bending Strength of Clonal Eucalyptus Wood

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The aim of this study is to estimate the physical properties, absorbed energy, impact bending strength, and Monnin hardness of clonal Eucalyptus wood (E. grandis, E. camaldulensis) from the region Maâmora (North-West of Morocco). The physical properties, impact bending strength, and Monnin hardness were evaluated on standard samples according to the French norms AFNOR. The obtained results show that the wood of two Eucalyptus clones is classified in the category of medium density, nervous, and normal quality wood. The E. camaldulensis wood has high average values of volumetric, tangential, radial, and longitudinal shrinkage, which are 17.440; 10.731; 6.957; and 0.373% compared to E. grandis wood, which are 14.851; 9.383; 5.718; and 0.366%, respectively. The mean values of absorbed energy and impact bending strength are great for the radial direction compared to the tangential direction for both E. camaldulensis and E. grandis wood. Moreover, the E. camaldulensis wood exhibits high values for absorbed energy, impact bending strength, and Monnin hardness than that of E. grandis wood. The correlation analyses appeared that the shrinkages (volumetric, radial, tangential), impact bending strength, and Monnin hardness have a significantly positive correlation with the oven-dry density of E. grandis and E. camaldulensis wood. The good knowledge of clonal Eucalyptus wood shrinkage may help us to take suitable procedures to reduce their influence (such as collapses) during drying this wood type. Furthermore, knowing its physical and mechanical properties is necessary to reveal the possibility of their use in construction, carpentry, and other works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that all data supporting the findings of this study are available in this article.

References

  1. A.R. Awan, M.I. Chughtai, M.Y. Ashraf, K. Mahmood, M. Rizwan, M. Akhtar, M.T. Siddiqui, R.A. Khan, Pak. J. Bot. 44, 2067 (2012)

    Google Scholar 

  2. A.M. Wahrhaftig, Matéria Rio de Janeiro (2018). https://doi.org/10.1590/S1517-707620170001.0315

    Article  Google Scholar 

  3. M. GaŠparík, M. Gaff, L. Šafaříková, C.R. Vallejo, T. Svoboda, BioResources 11, 8638 (2016)

    Article  Google Scholar 

  4. M. Amer, B. Kabouchi, M. Rahouti, A. Famiri, A. Fidah, S. El Alami, Int. J. Thermophys. 42, 20 (2021). https://doi.org/10.1007/s10765-020-02773-x

    Article  ADS  Google Scholar 

  5. C.A. Sansígolo, É.S. Ramos, Cerne 17, 47 (2011). https://doi.org/10.1590/S0104-77602011000100006

    Article  Google Scholar 

  6. E. Missanjo, J. Matsumura, Forests 7, 135 (2016). https://doi.org/10.3390/f7070135

    Article  Google Scholar 

  7. M. Báder, R. Németh, Acta Silv. Lign. Hung. 14, 83 (2018). https://doi.org/10.2478/aslh-2018-0005

    Article  Google Scholar 

  8. M. Amer, B. Kabouchi, M. Rahouti, A. Famiri, A. Fidah, S. El Alami, M. Ziani, Int. J. Thermophys. 41, 142 (2020). https://doi.org/10.1007/s10765-020-02723-7

    Article  ADS  Google Scholar 

  9. B.C. Bal, İ Bektaş, BioResources 7, 5855 (2012)

    Google Scholar 

  10. H. Yamamoto, F. Sassus, M. Ninomiya, J. Gril, Wood Sci. Technol. 35, 167 (2001). https://doi.org/10.1007/s002260000074

    Article  Google Scholar 

  11. J.A. McComb, R.A. Meddings, G. Siemon, S. Davis, Aust. For. 67, 236 (2004). https://doi.org/10.1080/00049158.2004.10674940

    Article  Google Scholar 

  12. Y.Q. Wu, K. Hayashi, Y. Liu, Y. Cai, M. Sugimori, J. Wood Sci. 52, 187 (2006). https://doi.org/10.1007/s10086-005-0751-6

    Article  Google Scholar 

  13. P.R.G. Hein, J. Near Infrared Spectrosc. 20, 427 (2012)

    Article  ADS  Google Scholar 

  14. H. Epmeier, M. Westin, A. Rapp, Scand. J. For. Res. 19, 31 (2004). https://doi.org/10.1080/02827580410017825

    Article  Google Scholar 

  15. Z. Pálková, M. Rudolfová, E. Georgin, M.W. Ben Ayoub, V. Fernicola, G. Beltramino, N. Ismail, D. Abd El Gelil, B.I. Choi, M. Heinonen, Int. J. Thermophys. 38, 153 (2017). https://doi.org/10.1007/s10765-017-2292-9

    Article  ADS  Google Scholar 

  16. D.G. Bučar, M. Merhar, BioResources 10, 4740 (2015)

    Google Scholar 

  17. M.B. Ali, S. Abdullah, M.Z. Nuawi, A.K. Ariffin, Indian J. Eng. Mater. Sci. 20, 504 (2013)

    Google Scholar 

  18. H. Heräjärvi, Wood Fiber Sci. 36, 216 (2004)

    Google Scholar 

  19. M. Grekin, E. Verkasalo, Balt. For. 19, 128 (2013)

    Google Scholar 

  20. S. Kurt, A. Özçifçi, BioResources 4, 960 (2009)

    Google Scholar 

  21. H. Lachowicz, R. Wojtan, A. Seleznovs, J. Lāceklis-Bertmanis, A. Kaķītis, A.K. Giedrowicz, Forests 12, 1308 (2021). https://doi.org/10.3390/f12101308

    Article  Google Scholar 

  22. M. Sydor, G. Pinkowski, A. Jasińska, Forests 11, 878 (2020). https://doi.org/10.3390/f11080878

    Article  Google Scholar 

  23. G. Koczan, Z. Karwat, P. Kozakiewicz, J. Wood Sci. 67, 7 (2021). https://doi.org/10.1186/s10086-020-01938-4

    Article  Google Scholar 

  24. E.A. Torrán, S. Zitto, A.D. Cotrina, J.C. Piter, Maderas Ciencia y Tecnol. 11, 71 (2009). https://doi.org/10.4067/S0718-221X2009000100006

    Article  Google Scholar 

  25. J.K. Githiomi, J.G. Kariuki, J. Trop. For. Sci. 22, 281 (2010)

    Google Scholar 

  26. F.J.N. França, T.S.F.A. França, G.B. Vidaurre, Holzforschung 74, 917 (2020). https://doi.org/10.1515/hf-2019-0209

    Article  Google Scholar 

  27. A. Famiri, B. Kabouchi, A. Hakam, J. Gril, For. Sci. 45, 1 (2001)

    Google Scholar 

  28. A. Famiri, B. Kabouchi, H. Baillères, A. El Abid, S. Al Alami, A. Hakam, Phys. Chem. News 59, 65 (2011).

  29. M. Amer, B. Kabouchi, M. Rahouti, A. Famiri, A. Fidah, J. Indian Acad. Wood Sci. 14, 91 (2017). https://doi.org/10.1007/s13196-017-0192-z

    Article  Google Scholar 

  30. M. El Mouridi, T. Laurent, A. Famiri, B. Kabouchi, T. Alméras, G. Calchera, A. El Abid, M. Ziani, J. Gril, A. Hakam, Phys. Chem. News. 59, 57 (2011)

    Google Scholar 

  31. S. El Alami, Contribution a la caractérisation physique et mécanique et à la valorisation par le séchage du bois de la foret marocaine : Cas des eucalyptus et de la loupe de Thuya. (Mohammed V University in Rabat, Doctoral thesis, Rabat, 2013).

  32. A.N. Sadegh, M. Kiaei, A. Samariha, Cellulose Chem. Technol. 46, 369 (2012)

    Google Scholar 

  33. S. Korkut, B. Guller, Biores. Technol. 99, 11 (2008). https://doi.org/10.1016/j.biortech.2007.09.058

    Article  Google Scholar 

  34. T.H. De Almeida, D.H. Almeida, L.A. Marcolin, D. Gonçalves, A.L. Christoforo, F.A.R. Lahr, Int. J. Mater. Eng. 5, 1 (2015). https://doi.org/10.5923/j.ijme.20150501.01

    Article  Google Scholar 

  35. I. Loulidi, M. Chargui, M. El Ghorba, A. Famiri, Sci. Technol. B 36, 9 (2012)

    Google Scholar 

  36. M. Gaff, F. Kačík, M. Gašparík, Compos. Struct. 216, 80 (2019). https://doi.org/10.1016/j.compstruct.2019.02.091

    Article  Google Scholar 

  37. F. Pierre, Traitement thermique du bois en vue de sa valorisation énergétique: Effet de l'intensité de traitement sur la composition chimique, les propriétés énergétiques et la résilience mécanique. (Agro Paris Tech. Français, Doctoral thesis, 2011).

  38. K.N. Segla, H. Rabiou, K. Adjonou, D. Guibal, A.B. Bationo, A. Mahamane, K. Kokou, P. Langbour, A.D. Kokutse, G. Chaix, J. Near lnfrared Spectrosc. 25, 256 (2017). https://doi.org/10.1177/0967033517719376

    Article  ADS  Google Scholar 

  39. F. Eyma, P.J. Méausoone, P. Martin, Ann. For. Sci. 61, 55 (2004). https://doi.org/10.1051/forest:2003084

    Article  Google Scholar 

  40. M. Noël, E. Mougel, E. Fredon, D. Masson, E. Masson, Biores. Technol. 100, 4717 (2009). https://doi.org/10.1016/j.biortech.2009.04.042

    Article  Google Scholar 

  41. A. Famiri, Contribution à la caractérisation et à la valorisation du bois de la forêt marocaine. Cas des eucalyptus et du chêne vert. (Mohammed V University in Rabat, Doctoral thesis, Rabat, 2005).

  42. I. Loulidi, A. Famiri, M. Chargui, M. El Ghorba, Int. J. Eng. Sci. 1, 1 (2012)

    Google Scholar 

  43. M.T. Elaieb, F. Shel, M. Jalleli, P. Langbour, K. Candelier, Madera y Bosques 25, 1 (2019). https://doi.org/10.21829/myb.2019.2521695

    Article  Google Scholar 

  44. S. Rosner, J. Plant Hydraulics 4, 1 (2017). https://doi.org/10.20870/jph.2017.e001

    Article  Google Scholar 

  45. M. Kiaei, A. Samariha, Am-Euras. J. Agric. Environ. Sci. 11, 257 (2011)

    Google Scholar 

  46. A.J.V. Zanuncio, A.G. Carvalho, A.C.O. Carneiro, M.T. Filho, P. Valenzuela, W. Gacitúa, J.L. Colodette, Rev. Árvore 42, 1 (2018). https://doi.org/10.1590/1806-90882018000200001

    Article  Google Scholar 

  47. H. Tsutsumi, H. Haga, T. Fujimoto, Vib. Spectrosc. 109, 103091 (2020). https://doi.org/10.1016/j.vibspec.2020.103091

    Article  Google Scholar 

  48. K.T.S. Hassan, J. Plant Prod. 10, 935 (2019). https://doi.org/10.21608/jpp.2019.68557

    Article  Google Scholar 

  49. A.L. Christoforo, T.H. Almeida, D.H. Almeida, J.C. Santos, T.H. Panzera, F.A.R. Lahr, Int. J. Mater. Eng. 6, 23 (2016). https://doi.org/10.5923/j.ijme.20160602.01

    Article  Google Scholar 

  50. M. Tonouewa, C. Gbemavo, C. Ouinsavi, N. Sokpon, Annales de l'Université de Parakou, Série « Sciences Naturelles et Agronomie 2, N°2 (2013).

  51. J. B. Mbagou, Variabilité intra-arbre des propriétés physico-mécaniques et chimiques du Tessmania africanaen provenance du Gabon. (Université Laval, Doctoral thesis, 2017).

  52. M. Kiaei, For. Stud. China 14, 229 (2012). https://doi.org/10.1007/s11632-012-0310-3

    Article  Google Scholar 

  53. A.R.P. Mascarenhas, M.S.V. Sccoti, R.R. Melo, F.L.O. Corrêa, E.F.M. Souza, A.S. Pimenta, Wood Mater. Sci. Eng. (2021). https://doi.org/10.1080/17480272.2021.1968490

    Article  Google Scholar 

  54. L.D. Bozi, A.R.P. Mascarenhas, R.R. Melo, Agroecossistemas 13, 1 (2021)

    Article  Google Scholar 

  55. B. Kord, A. Kialashaki, B. Kord, Turk. J. Agric. 34, 121 (2010). https://doi.org/10.3906/tar-0903-14

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Rabat Forest Research Centre (High Commission for Water Resources, Forests and Combating Desertification) in collaboration with the Faculty of Sciences (Mohammed V University), Morocco.

Funding

No funding was received for conducting this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors included in this manuscript contributed to its writing, and they have approved the manuscript to be published.

Corresponding author

Correspondence to Mahyoub Amer.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest in the content of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, M., Kabouchi, B., Rahouti, M. et al. Experimental Study of Physical Properties and Impact Bending Strength of Clonal Eucalyptus Wood. Int J Thermophys 43, 163 (2022). https://doi.org/10.1007/s10765-022-03087-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03087-w

Keywords

Navigation